Понятие бифуркации. Задачи теории бифуркаций. Виды бифуркаций Практическое применение теории бифуркаций в информатике

Исследование качественных математических моделей сопровождается возникновением качественных вопросов, можно разделить на две категории:

  • Вопросы, относящиеся к поведению системы при фиксированных значениях параметров; важным при этом является качественное понимание характера режимов, устанавливаемых в системе;
  • Вопросы, касающиеся событий, которые происходят в системе при изменении значений параметров. Медленное изменение параметра может привести к тому, что при пересечении некоторого критического значения режим, установившийся в системе, приобретает качественные изменения. При таких перестройках фазовый портрет изучаемой системы, изменяется. Качественные перестройки фазового портрета называются бифуркация .
Итак, вопрос второго типа предполагают определение бифуркационных значений параметров и описание явлений, происходящих при переходе через критические значения.

Задачи теории бифуркаций

Решением вопросов данного типа занимается теория бифуркации, задачами которой являются:
  1. описание всех возможных бифуркации исследуемой системы;
  2. разбиение множества бифуркационных значений параметров на области с разными типами грубых фазовых портретов;
  3. построение для каждой области соответствующего фазового портрета.
Пример . Рассмотрим возникновение и сущность бифуркации. Пусть имеем динамическую систему, заданную уравнением Приравняем правую часть описания системы к нулю и проанализируем, какие значения может принимать параметр, т.е. как он влияет на поведение системы. Имеем уравнение: x 2 = -r . (*) При r<0 уравнение (*) имеет положительную правую часть. Итак, решений имеем два: Изобразим данный случай графически (рис. 1)
Рисунок 1 - Поведение исследуемой системы в случае r<0 Первая точка (слева) устойчива, так как из рис. 1 видно, что функция меняет свой знак с «+» на «-». Вторая точка - неустойчива, так как из рис. 1 видно, что функция меняет свой знак с «-» на «+».
  1. При r = 0 уравнение (*) имеет один корень. В этой точке, следовательно мы не можем аналитически определить тип устойчивости. Фазовый график представлен на рис. 2.
Рисунок 2 - Поведение исследуемой системы в случае r = 0 Из анализа графика рис. 2 можно установить, что функция f(x) при переходе через особую точку не меняет знак, следовательно эта точка является неустойчивой.
  • При r > 0 точек равновесия нету:
Рисунок 3 - Поведение исследуемой системы в случае r > 0 Итак, полустойкие точка равновесия исчезает, как только становится положительным. Так как характеристики точек равновесия меняются со временем, говорят, что динамическая система имеет бифуркацию. В данном случае значение параметра меняются от отрицательных через ноль к положительным и характеристики стационарных точек изменяются так, как показано на рис. 1-3. Следовательно, в точке происходит бифуркация.

Точка бифуркации

Точка бифуркации - это такое состояние системы, при котором даже незначительное возмущение может привести к глобальным изменениям. Аналогично выражения «взмах крыла бабочки привел к урагану в Калифорнии». Рыцарь на распутье - это , космический аппарат, летящий между Землей и Луной и не имеющий необходимой скорости, чтобы выйти из гравитационного поля одной или другой планеты - точка бифуркации. Станет он спутником Земли или Луны, зависит от микроскопических возмущений типа солнечного ветра или микрометеоритов. На фондовом и валютном рынках уровни поддержки или сопротивления являются точками бифуркации. Ценные бумаги или валюта, достигнув их, или сорвутся вниз, либо пойдут вверх и это зависит от очень незначительных факторов. Август 1991 г. - точка бифуркации для СССР. Точи бифуркации часто встречаются в потоках газов и жидкости. Поэтому так трудно предсказать погодные условия.
Предсказание погодных условий при помощи точек бифуркации. Термин «бифуркация» буквально означает «раздвоение», но применяется в более широком смысле для обозначения всех возможных качественных перестроек некоторого объекта при изменении параметра, от которого он зависит. Существуют разные . В примере для функции значение параметра ε = 0 соответствует точке бифуркации, так как при переходе ε от отрицательных значений к положительным стационарное состояние х=0 стало неустойчивым и дополнилось парой устойчивых состояний - при отрицательных значениях ε стационарные состояния вообще отсутствуют, а в точке ε = 0 происходит рождение таких состояний, один из которых устойчив, а другой - неустойчивый. В обоих случаях значения ε = 0 соответствуют точкам бифуркации, хотя и разных типов. Проблемой исследования точек бифуркации является их классификация и анализ поведения семейств функций вблизи структурно неустойчивых особых точек.

(от лат. bifurcus - раздвоенный) представляет собой про-цесс качественного перехода от состояния равновесия к хаосу через по-следовательное очень малое изменение (например, удвоение Фейгенбаума при бифуркации удвоения) периодических точек.
Обязательно необходимо отметить, что происходит качественное изменение свойств системы, так называемый катастрофический скачок. Момент скачка (раздвоения при бифуркации удвоения) происходит в точке бифуркации.
Хаос может возникнуть через бифуркацию, что показал Митчел Фей- генбаум. При создании собственной теории о фракталах Фейгенбаум анализировал в основном следующее логистическое уравнение:
X + , = СХ - С(Х у = СХ (1 - X)
п+1 и 4 и7 пу п"
где X - комплексное число; С - внешний параметр.
Из этого уравнения он вывел, что при некоторых ограничениях во всех подобных уравнениях происходит переход от равновесного состояния к хаосу.
Ниже рассмотрен классический биологический пример этого урав-нения.
Например, изолированно живет популяция особей нормированной численностью X. Через год появляется потомство численностью X
и и + 1
Рост популяции описывается первым членом правой части уравнения (CXJ, где коэффициент С определяет скорость роста и является определяющим параметром. Убыль животных (за счет перенаселенности, недос-татка пищи и т.п.) определяется вторым, нелинейным членом С(Хп)2.
Результатом расчетов являются следующие выводы:
при С в области 1 в диапазоне 3 при С > 3.57 количество решений логистического уравнения начинает стремиться к бесконечности, в результате чего происходит перекрывание областей различных решений (они как бы закраши-ваются) и поведение системы становится хаотическим.
С ростом С иногда появляются области, в которых количество решений логистического уравнения вновь снижается до видимых величин. Так, при Сот 3.627 до 3.631 (включительно) количество решений снижается до шести, а при С = 3.632 достигает двенадцати.
Впоследствии, однако, с ростом С количество решений вновь увели-чивается.
Интерес может также представлять значение внешнего параметра С = = 3.67857351. До него решение логистического уравнения для каждого п является или больше, или меньше предыдущего. После достижения этого значения начинает проявляться следующий эффект - вслед за растущим значением Хп иногда начинают появляться растущие значения Хп, хотя ранее за ростом всегда следовало падение.
Подобное поведение логистического уравнения подвигло классиков теории хаоса к выводу о том, что итогом развития всех эволюционирующих физических систем является состояние, похожее на состояние дина-мического хаоса.
Отсюда делаются следующие выводы о хаотических системах:
Хаотические системы - это системы с обратной связью, когда от предыдущего значения зависит последующее. Этот факт прямо указывает на то, что хаотические системы неслучайны, так как одним из свойств случайных блужданий является независимость предыдущих и последующих событий друг от друга.
В хаотических системах много точек равновесия. Так, при достижении параметром С определенного значения наблюдается более чем одна точка равновесия. В нашем примере это свойство проявляется уже при С = 3. До первой точки бифуркации система является ли-нейной и еще не хаотична. Однако уже после первой бифуркации динамика системы становится нелинейной, приобретая все больше хаотических очертаний. И после С > 3.57 количество вариантов решений логистического уравнения приобретает завершенный хаотический характер.
Хаотическая система является фракталом. Как мы помним, главное свойство фракталов - самоподобие. Так и в известной бифуркаци-онной модели малые элементы подобны большим, что очень хорошо видно на рис. 6.11.


Если рассматривать теорию бифуркации в пересечении с теорией эффективных рынков, в точке бифуркации на рынок поступает новая информация, которая приводит к очередному бифуркационному изме-нению. Как только действие информации заканчивается, рынок успокаи-вается. Успокаивается он до появления новой информации, а значит, до новой точки бифуркации.
Динамические переменные Хп принимают значения, которые сильно зависят от начальных условий. При проведенных на компьютере расчетах даже для очень близких начальных значений С итоговые значения могут резко отличаться. Более того, расчеты становятся некорректными, так как начинают зависеть от случайных процессов в самом компьютере (скачки напряжения и т.п.).
Таким образом, состояние системы в момент бифуркации является крайне неустойчивым, а бесконечно малое воздействие может привести к выбору дальнейшего пути движения, а это, как мы уже знаем, является главным признаком хаотической системы (существенная зависимость от начальных условий).
Логистическое уравнение можно свести к следующей системе уравнений при условии, если уп стремится к уп:
Гх„(1-х„) = х„_1(1-хя_1)
[Х„ =СХ„_1(1-ХЯ_1)
Из этой системы выводится простая формула, которую мы уже видели ранее:
X = 1 - 11С.
п
Отсюда видно, что Хп меньше единицы при любых значениях С. Второй вывод: Хп тем больше, чем больше С. Это означает рост точки сходимости (или нахождение точки, в которой логистическое уравнение стремится найти равновесие) вместе с ростом внешнего параметра.
На основании этой формулы можно легко рассчитать, что при С - 3 решение логистического уравнения стремится к 2/3, т.е. к 0.666666... в периоде.
Рассчитать логистическое уравнение можно на персональном компьютере, используя электронную таблицу Excel. Для этого в ячейку А1 по-местите значение внешнего параметра С. Начните, например, с 0.5. В ячейку В1 поместите значение комплексного числа X, например 0.1. Дальше в ячейку В2 необходимо будет ввести следующую формулу, которую продлите на максимально возможное для одного столбца количество значений (например, до 65 536 строки):
=$А$1 X В1 X (1 - В1).
Элементарные расчеты покажут вам, что, действительно, с ростом периодов п результат логистического уравнения стремится к нулю.
При увеличении параметра С до 2 логистическое уравнение уже через п = 5 (при X - 0.1) сходится к 0.5.
При увеличении параметра С до 3 результат логистического уравнения, действительно, сначала словно раздваивается, однако впоследствии он так же, как и при всех предыдущих значениях С, стремится сойтись к одной точке, значение которой мы уже знаем (2/3).
Из формулы логистического уравнения видно, что с ростом п нивелируется разница в первом значении X для итогового решения логистиче-ского уравнения. Что интересно, это верно и для больших значений С. Из этого можно сделать вывод, что в логистическом уравнении самой важной переменной является величина внешнего параметра С. В биоло-гическом примере этим параметром является скорость роста популяции. При небольших значениях скорости роста, как показывают расчеты, она определит период времени п, за который система придет в равновесие.
Фейгенбаум в результате своих исследований нашел следующую зако-номерность в появлении бифуркаций:
F = = 4.669201660910...,
Ow-ь»)
где F -- число Фейгенбаума (универсальная константа, подобно числу Ті);
Ь - значение внешнего параметра С при п-й бифуркации.
Кстати, универсальность константы Фейгенбаума как характеристики многих естественных хаотических процессов оставляет надежду на систе-матизацию и классификацию хаоса.
Используя число Фейгенбаума, можно найти значение С, при котором можно будет ожидать очередной бифуркации решений логистического уравнения:
4.669201609...
Применение этой формулы позволяет предсказывать, какие значения внешнего параметра С являются критическими для возникновения новой бифуркации. Интересно, что проведенные мной расчеты показали, что внешний параметр С для рассматриваемого нами логистического уравнения стремится к пределу 3.569945672, и сколь долго бы я не про-водил расчеты в поиске следующей точки бифуркации, они заканчива лись неудачей. Конечно же, вручную можно ввести и большие значения С, однако приведенная выше формула для определения значения внеш- него параметра С при п-й бифуркации в этом нам уже не поможет. Вместе с тем эта формула дает возможность наглядно понять, как очень малые изменения внешнего параметра С приводят к очень большим изменениям в решении логистического уравнения через большое количество периодов п.
Фейгенбаум также установил универсальные закономерности перехода к динамическому хаосу при удвоении периода. Здесь следует сказать, что в литературе, посвященной теории хаоса, делаются ссылки на экспери-ментальные подтверждения этого перехода для широкого класса механи-ческих, гидродинамических, химических и других систем.
Результатом исследований Фейгенбаума стало так называемое дерево Фейгенбаума (рис. 6.12).


Рис. 6.12. Дерево Фейгенбаума (расчет на основе немного измененной логистической
формулы)

,
Между логистическим уравнением дерева Фейгенбаума {Хп+1 = СХп(1 - XJ) и множеством Мандельброта (Zn+1 - Z2 + С) видна схожесть, которая проявляется в том числе и в простом графическом сопоставлении. Здесь мы видим пересечение бифуркационных моделей с фракталами, что еще раз подтверждает, что бифуркации имеют фрактальную природу, поскольку они тоже самоподобны.
Разница здесь только в том, что дерево Фейгенбаума растет в сторону, противоположную от множества Мандельброта. Это объясняется разницей знаков внутри соответствующих формул, где в первой формуле квадрат числа X отнимается, а во второй - квадрат числа Z прибав-ляется.


.
На рис. 6.13 видно, что каждая бифуркация сопровождается появле-нием новой фрактальной фигуры во множестве Мандельброта.
Что же такое бифуркации в обыденности? Как мы знаем, бифуркации возникают при переходе системы от состояния видимой стабильности и равновесия к хаосу. Примерами таких переходов являются дым, вода и многие другие самые обычные природные явления. Так, поднимающийся вверх дым сигареты сначала выглядит как упорядоченный столб. Однако через некоторое время он начинает претерпевать изменения, которые сна-чала кажутся упорядоченными, а затем становятся хаотически непредска-зуемыми. Фактически первый переход от стабильности к некоторой форме видимой упорядоченности, но уже изменчивости, происходит в первой точке бифуркации. Далее количество бифуркаций увеличивается, достигая огромных величин. С каждой бифуркацией функция турбулентности дыма приближается к хаосу. Причиной бифуркаций здесь является ускорение, которое через некоторое время после появления дыма приводит к тому, что плотность дыма падает ниже плотности воздуха и дым рассеивается.
С помощью теории бифуркаций можно предсказать характер движения, возникающего при переходе системы в качественно иное состояние, а также область существования системы и оценить ее устойчивость.
К сожалению, само существование теории хаоса трудно совместимо с классической наукой. Обычно научные идеи проверяются на основании предсказаний и их сверки с реальными результатами. Однако, как мы уже знаем, хаос непредсказуем, и, когда изучаешь хаотическую систему, можно прогнозировать только модель ее поведения. Поэтому с помощью хаоса не только нельзя построить точный прогноз, но и, соответственно, проверить его. Однако это не должно говорить о неверности теории хаоса, подтвержденной как в математических расчетах, так и в жизни.
Сейчас еще не существует математически точного аппарата применения теории хаоса для исследования рыночных цен, поэтому спешить с применением знаний о хаосе нельзя. Вместе с тем, действительно, это самое перспективное современное направление математики с точки зрения прикладных исследований финансовых рынков.

Катастрофой называется скачкообразное изменение, возникающее в виде внезапного ответа системы на плавное изменение внешних условий. Математическое описание явлений, связанных с резкими скачками и качественными изменениями картины процесса, дается теориями особенностей и бифуркаций; бифуркации (катастрофы) представляют собой разрывы в системах, описываемых гладкими (непрерывными) функциями. Теория катастроф французского математика Р. Тома (R.Thom) - топологическая формализация, математический язык которой сложен даже для математиков. Теории особенностей, бифуркаций и катастроф наилучшим образом изложены в доступной для понимания биолога и небольшой по числу страниц книге «Теория катастроф» нашего соотечественника В.И. Арнольда, одного из лучших математиков мира. Эти теории описывают возникновение дискретных структур из непрерывных, называемых математиками гладкими.

Итак, источники теории катастроф – теория бифуркаций динамических систем великих математиков А. Пуанкаре (H. Poincare) и А.А. Андронова и топологическая теория особенностей гладких отображений Х. Уитни (H. Whitney). Некоторое представление об топологических особенностях может дать изображение так называемой каустики (от греч. «жгущий»), возникающей при отражении от окружности пучка параллельных лучей (рис. 1) – к примеру, в чашке с жидкостью.

Рис. 1. Каустика при отражении от окружности пучка лучей (Брус, Джиблин, 1988)

Топологическая особенность, называемая сборкой, она же бифуркация, элементарная катастрофа, схематически показана на рис. 2.

Рис. 2. Топологическая особенность (сборка) и ее проекция на плоскость (Брус, Джиблин, 1988)

Термин «бифуркация» (раздвоение, образование вилки) употребляется, как и «катастрофа», для обозначения качественных перестроек различных систем

при изменении параметров. Обычный пример катастрофы, бифуркации представляет собой поведение какой-либо упругой конструкции, под воздействием увеличивающейся нагрузки внезапно, скачкообразно переходящей в другое положение (рис. 3), причем направление выгиба конструкции предсказать невозможно.

Рис. 3. Прогиб колонны при превышении критической нагрузки (Малинецкий, 1997)

Графически бифуркация изображена на рис. 4: система имеет одно решение, одно значение в каждой точке - до точки бифуркации, после чего появляется выбор между двумя возможными решениями.

Рис. 4. Графическое представление бифуркации (катастрофы)

В самых разнообразных системах при изменении значения «управляющей» переменной система уходит от равновесия, достигая порога устойчивости. Это критическое значение называется точкой бифуркации; в точке бифуркации у системы появляется «выбор», в котором неизбежно присутствует элемент случайности с невозможностью предсказать выбор траектории эволюции системы.. Последовательность бифуркаций во времени описывает морфологию поведения системы (рис. 5).

Рис. 5. Примеры последовательностей бифуркаций (Малинецкий, 1997)

Теория катастроф указывает некоторые общие черты явлений скачкообразного изменения режима разнообразных систем в ответ на плавное изменение внешних условий: сочетание случайности и необходимости, детерминизма и непредсказуемости, возможность выбора из нескольких решений вблизи точки бифуркации, неожиданно сильного отклика на слабое воздействие (и наоборот).

В 70-х годах теорию катастроф стали применять к широкому спектру явлений с дискретным, скачкообразным поведением, когда кажущаяся

Сложные динамические системы включают флуктуирующие, случайным образом изменяющиеся компоненты. Отдельные флуктуации или их сочетания в системе с обратной связью, усиливаясь, вызывают разрушение прежнего состояния системы. Случайные воздействия в момент перелома (в точке бифуркации) могут подтолкнуть систему на новый путь развития; после же выбора одного из возможных путей, траектории развития, действует однозначный детерминизм - развитие системы предсказуемо до следующей точки бифуркации. Так случайность и необходимость дополняют друг друга.

В неравновесных условиях вблизи точки бифуркации система очень чувствительна к внешним воздействиям, и малое по силе внешнее воздействие, слабый сигнал может вызвать значительный отклик, неожиданный эффект. Внешние физические поля могут восприниматься системой, влияя на ее морфогенез. Так, при образовании ячеек Бенара (см. ниже) существенную роль начинает играть гравитация. Есть и биологические аналогии: роль гравитации в становлении дорсо-вентральной полярности при оплодотворении яйцеклетки амфибий, поляризация зиготы фукоидных водорослей под воздействием градиента освещенности.

Итак, в далеком от равновесия состоянии системы на первый план выступают нелинейные соотношения, слабое внешнее воздействие может порождать неожиданное, непредсказуемое поведение системы в целом. Иногда в состояниях, далеких от равновесия, очень слабые флуктуации или внешние возмущения могут усиливаться до огромных, скачкообразным образом разрушающих всю прежнюю структуру системы и переводящих ее в иное состояние.

К теории катастроф по сути близка идея самоорганизованной критичности (П. Бак и К. Чен, 1991), согласно которой системы с большим числом

взаимодействующих элементов спонтанно эволюционируют к критическому состоянию, когда малое воздействие может привести к катастрофе. Сложные системы могут разрушиться не только от мощного удара, но и от малого события, запускающего цепную реакцию, каскад бифуркаций, разрушительный турбулентный режим. К сложным системам относятся многие природные (земная кора, экосистемы) и социальные системы; примеры природных катастроф – землетрясения, лавины, социальных – крушение империй, обвал рынков. Экспериментальная модель Бака и Чена (Bak, Chen) – конические кучи сухого песка. Падение единственной песчинки на песчаный конус, находящийся в критическом состоянии, может вызвать обвал, катастрофу. В критическом состоянии падение отдельных скатывающихся песчинок, фиксируемое в эксперименте как «шум мерцания», оказывается предвестником катастрофы; можно выявить подобные предвестники природных и социальных катастроф. Кучи песка, по словам авторов, это не просто экспериментальная модель, это новый взгляд на мир, метафора кооперативного поведения многих частиц, неустойчивого равновесия, непредсказуемости. Это холистическая концепция: глобальные характеристики и эволюцию системы нельзя понять, анализируя составляющие ее части.

Вхождение системы в непредсказуемый режим, переход к хаосу, описывается каскадом бифуркаций, следующих одна за другой (рис. 6). Каскад бифуркаций ведет последовательно к появлению выбора между двумя решениями, затем четырьмя и т.д.; система начинает колебаться в хаотическом, турбулентном режиме последовательного удвоения возможных значений.

Теория бифуркаций и катастроф неразрывно связана с современными представлениями о динамическом, или детерминированном, хаосе.

Рис. 6. Сценарий удвоения периода; на вставке показана выделенная часть (Пайтген, Рихтер, 1993)

Обзор

Бифуркация - это приобретение нового качества в движениях динамической системы при малом изменении её параметров.

Центральным понятием теории бифуркации является понятие (не)грубой системы (см. ниже). Берётся какая-либо динамическая система и рассматривается такое (много)параметрическое семейство динамических систем, что исходная система получается в качестве частного случая - при каком-либо одном значении параметра (параметров). Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой . В противном случае, если такой окрестности не существует, то система называется негрубой .

Таким образом в пространстве параметров возникают области грубых систем, которые разделяются поверхностями, состоящими из негрубых систем. Теория бифуркаций изучает зависимость качественной картины при непрерывном изменении параметра вдоль некоторой кривой. Схема, по которой происходит изменение качественной картины называется бифуркационной диаграммой .

Основные методы теории бифуркаций - это методы теории возмущений. В частности, применяется метод малого параметра (Понтрягина).

Бифуркация равновесий

В механических системах, как правило, установившиеся движения (положения равновесия или относительного равновесия) зависят от параметров . Значения параметров, при которых наблюдается изменение количества равновесий, называются их бифуркационными значениями . Кривые или поверхности, изображающие множества равновесий в пространстве состояний и параметров, называются бифуркационными кривыми или бифуркационными поверхностями . Прохождение параметра через бифуркационное значение, как правило, сопровождается изменением свойств устойчивости равновесий. Бифуркации равновесий могут сопровождаться рождением периодических и других, более сложных движений.

Основные понятия

См. также

Литература

  1. Андронов А. А., Леонтович Е. А., Гордон И. М., Майер А. Г. Теория бифуркаций динамических систем на плоскости. М .: Наука, 1967.
  2. Баутин Н. Н., Леонтович Е. А. Методы и приёмы качественного исследования динамических систем на плоскости. М .: Наука. Гл. ред. физ.-мат. лит., 1990. 488 с. (Справочная математическая библиотека.)
  3. Четаев Н. Г. Устойчивость движения. М .: Наука. 1955.

Wikimedia Foundation . 2010 .

Смотреть что такое "Теория бифуркаций" в других словарях:

    Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

    У этого термина существуют и другие значения, см. Теория катастроф (значения). Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких… … Википедия

    Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

    Основная статья: Теория бифуркаций Каскад бифуркаций (Последовательность Фейгенбаума или сценарий удвоения периода) один из типичных сценариев перехода от порядка к хаосу, от простого периодического режима к сложному апериодическому при… … Википедия

    Совокупность приложений теории особенностей дифференцируемых (гладких) отображений X. Уитни (Н. Whitney) и теории бифуркаций А. Пуанкаре (Н. Poincare) и А. А. Андронова. Назв. введено Р. Томом (R. Thorn) в 1972. К. т. применяется к геом. и физ.… … Физическая энциклопедия

    БИФУРКАЦИЯ, приобретение нового качества в движениях динамической системы при малом изменении ее параметров. Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в нач. 20 в., затем эта теория была развита А. А. Андроновым и учениками … Энциклопедический словарь

    - (от греч. katastrophe поворот, переворот), 1) совокупность приложений теории особенностей гладких (дифференцируемых) отображений и теории бифуркаций. Поскольку гладкие отображения встречаются повсеместно, повсеместно встречаются и их особенности … Естествознание. Энциклопедический словарь

    В Википедии есть статьи о других людях с такой фамилией, см. Юдович. Виктор Иосифович Юдович Дата рождения: 4 октября 1934(1934 10 04) Место рождения: Тбилиси, СССР Дата смерти … Википедия

    У этого термина существуют и другие значения, см. Ласточкин хвост. Ласточкин хвост (англ. swallow tail) нерегулярная поверхность в трёхмерном пространстве, определить которую можно несколькими эквивалентными способами. Рассмотрим… … Википедия

    Основная статья: Теория бифуркаций Постоянная Фейгенбаума универсальная постоянная, характеризующая бесконечный каскад бифуркаций удвоения периода при переходе к детерминированному хаосу (сценарий Фейгенбаума). Открыта Митчеллом… … Википедия

Бифуркация

Бифуркация берёт свои корни от латинского слова bifurcus -- раздвоенный применяется для обозначения различных процессов в различных научных сферах. Прелесть сложных систем - их динамическое поведение, постоянное развитие. Чтобы система развивалась, необходим переход из одного состояния в другое. Сам переход называется бифуркацией. Этот термин был введён для обозначения подобного процесса Л.Пуанкаре. Несмотря на широкую область использования данного термина, фактически он описывает один и тот же процесс. При вольном обобщении различных источников получается такое определение: бифуркация - это процесс, когда система двигается в устойчивом состоянии и в какой-то точке её состояние становится неустойчивым, в следствие чего она продолжает развитие не по старой траектории, а по двум новым. Графически это выглядит так.

График показывает, что в процессе развития системы во времени(t), в определённой точке, обозначенной как точка бифуркации, система, вместо одного устойчивого состояния приобретает два новых устойчивых состояния, и далее этот процесс как правило повторяется. Существует масса различных примеров бифуркации: бифуркация рек -- разделение русла реки и её долины на две ветви, которые в дальнейшем не сливаются и впадают в различные бассейны; в медицине -- разделение трубчатого органа (сосуда или бронха) на 2 ветви одинакового калибра, отходящие в стороны под одинаковыми углами; механическая бифуркация -- приобретение нового качества в движениях динамической системы при малом изменении её параметров; разделение старших классов учебного заведения на два отделения; бифуркация времени-пространства (в научной фантастике) -- разделение времени на несколько потоков, в каждом из которых происходят свои события. В параллельном времени-пространстве у героев бывают разные жизни.

Пожалуй, пора перейти к классификации бифуркаций, и затем и к теории катастроф.

Бифуркации классифицируются на мягкие и жёсткие .

Мягкая бифуркация - это переход из одного устойчивого состояния в другое, при том что новое устойчивое состояние находится в непосредственной близости от исходного. Т.е. качественно не имеет сильно заметных существенных различий.


Жёсткая бифуркация - это бифуркация, в результате которой система приобретает качественно новое устойчивое состояние, не похожее на исходное.


Из рисунка видно, что при малом изменении параметра система выбирает новый режим, который уже находится не в непосредственной близости от исходного, следовательно, имеет качественные различия. Именно жёсткие бифуркации легли в основу теории катастроф.

Теория катастроф

Быть может, удастся доказать неизбежность некоторых катастроф, например, болезней или смерти. Познание не обязательно будет обещанием успеха или выживания: оно может вести также к уверенности в нашем поражении, в нашем конце.

РЕНЕ ТОМ

Прежде чем вникнуть в суть теории катастроф, необходимо осознать актуальность данной тематики. Первое, что я считаю нужным отметить - существующие достижения в этой области. Во-первых, философские концепции о всеобщей предопределённости потеряли всякий смысл, что дало надежду на возможность влиять на предполагаемые кардинальные повороты ситуации. Вместе с надеждой появилось осознание ответственности за происходящее, за нарушение баланса в природе, обществе или за отсутствие там гармонии. Остается проблема обеспечения этой информацией максимально большего количества людей, кроме того важен не сам факт получения этой информации людьми, а факт осознания и восприятия этого вывода как побуждения к действиям. К сожалению, это больше похоже на утопию, поэтому продолжая размышлять о пользах теории, нужно не забывать, что и термин «катастрофа» представляет собой не бытовое видение этого события. Катастрофа в данном случае - это просто кардинальное изменение существующей системы. Основной задачей, как мы сейчас уже понимаем, является лишь правильно угадать момент и направление действий. Кроме того, этот факт даёт нам возможность предполагать, что даже и самая безвыходная ситуация - признак надвигающейся «катастрофы», означает лишь перемену, а не Армагедон.

Существует не мало исторических примеров, когда приложенных в нужный момент минимальных усилий хватало для того, чтобы перевернуть всё «с ног на голову». Естественно, что не все попытки «изменить мир» воплотились. Безусловно, это зависит от качества предпринимаемых попыток, но немаловажную роль играет время и место происходящего. Если правильно «угадать момент», то даже с самой бессмысленной идеей можно добиться радикальных изменений, а если нет, то даже самая гениальная мысль не изменит ситуацию. Чтобы уметь определять расстояние системы до точки катастрофы (а именно при переходе через эти точки и происходит самое интересное), нужно потрудиться и найти зависимость системы от внешних параметров в математических моделях, но я сомневаюсь, что кто-то занимался этим на самом деле, скорее это прерогатива будущего.

Как же опознать приближение системы критической точки? Существует такое понятие как «флаги катастроф» - особенности поведения системы, по которым можно это определить. Вот они: наличие нескольких устойчивых состояний, существование неустойчивых состояний, из которых система стремится выйти, возможность скорого изменения системы при незначительных изменениях внешних параметров, необратимость системы

Полагаю, что исчерпывающим примером каждый может назвать сам себя. Очевидно, что человек - это сложная система, равно как и его жизнь. В какие-то моменты индивид оказывается перед выбором, который определит его будущее в какой-то довольно существенной степени (выбор места учёбы, работы, места жительства и т.п.). При этом наблюдается «неуйстойчивое состояние», присущее любому человеческому существу, только в разной степени (вот уже и второй флаг). Как правило, преодолев «первый флаг», постоянно держа второй в руке, человек оказывается лицом к лицу с «третьим флагом», адаптирующего его с его выбором. После принятия решения, как правило, назад пути нет, а это верный признак того, что вы упёрлись в «четвёртый флаг». Если учёный обнаружит один из этих признаков, то ему не составит труда добраться и до остальных. Следует отметить, что это не единственный возможный набор «флагов».

Теория сильно отличается от практики тем, что никаких действий предпринять в случае чего не может. Но она вполне в состоянии понять и объяснить явления, с которыми мы сталкиваемся в реальной жизни. В бытовом смысле катастрофа или хаос это нечто разрушительное, обязательно с летальным исходом, и абсолютно неконтролируемое и необъяснимое. Как утверждает доктор физико-математических наук А.Чуличков: «С точки зрения математики катастрофа и хаос - вовсе не обязательно крушение всех надежд или еще какая-нибудь беда.», и я склонна ему верить. Что же такое «катастрофа» в таком случае? Для разнообразия процитирую другого научного деятеля - В.И.Арнольда: «Катастрофами называются скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий». Основная задача теории - это не растеряться в такой ситуации (в преддверии кризиса) и найти тот верный шаг, который поможет не только не испортить ситуацию, но и переманить госпожу удачу на свою сторону. А для того, чтобы вовремя начать придумывать план по захвату удачи, существуют посланники другого мифического субъекта - судьбы. Их мы рассмотрели ранее и выяснили, что называются они «флагами катастроф». Осталось только научиться оперировать этой информацией, и тогда дорога в светлое будущее обеспечена, также как и дружеские отношения с прекрасными госпожами - Судьбой и Удачей.

Как было сказано в начале, теория катастроф дает нам представление о сценариях развития событий после прохождения определенного этапа жизни сложной системы. Зиман, в своём ответе Рене Тому, выделил семь видов катастроф.

Глубже вдаваться в теорию катастроф я не буду, потому что основная цель этой работы -отделить понятия - «бедствие» и «катастрофа». И не просто описать и классифицировать их, а выяснить причину столь многочисленных исследований этой темы, и рассмотреть результаты проделанной работы.