Типы газовых. Виды и типы газовых плит. Расшифровка маркировки баллонов

Существуют условия, без которых повседневная жизнь человека не будет считаться полноценно комфортной.

Прежде всего, это различные системы жизнедеятельности, к которым относятся отопление и источник горячей воды в помещениях.

Первые конструкции, которые позволяли эффективно отапливать внутренние пространства зданий, появились еще во времена Древнеримской империи.

Изначально для этого процесса использовалось твердое топливо (дрова, уголь и так далее), но развитие цивилизации привело к возможности использования для подобных целей электричество, жидкое топливо, энергию солнца, природный газ.

История развития газовых котлов

Первое серийное производство газового оборудования для нагрева воды было налажено в начале 20-го века в Германии.

Производителем стала компания «Юнкерс», которая также применила в своем продукте инновационную на то время технологию – блок автоматического управления всей системой.

Первый отечественный серийный газовый котел появился только в 1947-ом году. Модель выпускалась под названием «Конорд».

В мировой практике развитие отопительного и водонагревательного оборудования зависело от доступности тех или иных ресурсов.

Например, в СССР производили преимущественно газовые котлы, так как топливо для них было и остается очень доступным.

В Европе больше ценили модели, работающие за счет электричества.

В США хорошо продавалась продукция, которая работает на дизельном топливе, а в последнее время и на солнечной энергии.

Разновидности и типы газовых котлов

Газовое оборудование делится по своему функционалу и месту установки. В первом случае котлы можно разделить:

    На одноконтурные.

    На двухконтурные.

Во втором:

    На настенный тип монтажа.

    На напольный вариант эксплуатации.

Каждый из этих типов обладает собственными особенностями, которые следует учитывать при выборе необходимой модели.

    Одноконтурные газовые котлы

Главная особенность этого варианта в том, что его предназначение заключается только в работе в системе отопления помещений. Если владелец модели желает использовать установленное оборудование еще и в качестве источника горячей воды в доме, то ему придется пойти на дополнительные финансовые растраты – потребуется купить специальный бойлер, который можно подключить к данному газовому котлу.

    Двухконтурные газовые котлы


Подобное оборудование, кроме того, что работает в системе отопления, дополнительно является источником горячей воды. Естественно, что двухконтурный котел стоит дороже, чем одноконтурный вариант, но практически всегда дешевле тандема, состоящего из бойлера и модели с одним контуром.

Тем не менее, стоит отметить у двухконтурного котла ряд недостатков:

    Чем больше количество потребителей горячей воды, тем менее эффективно такой оборудование (рекомендуется рассчитывать на трех человек максимум, которые потребляют подогретую жидкость из котла). Следовательно, в других ситуациях все равно потребуется установка бойлера или другого водонагревательного оборудования, что приведет к дополнительным финансовым растратам.

    Чем дальше находится точка потребления воды, тем дольше потребуется ждать достижения приемлемой температуры жидкости. Обычно специалисты не рекомендуют размещать потребительские краны на расстоянии, более чем 7 метров трубы от котла. Превышение этого придела приведет к достаточно длительному ожиданию, а также напрасному расходу воды, которую придется сливать.

В отличие от одноконтурных, двухконтурные котлы позволяют осуществить возможность подключать в одну полноценную систему сразу несколько моделей оборудования, что иногда бывает очень удобно и эффективн

Настенные газовые котлы


Главные преимущества подобного варианта:

    Относительная простота монтажных работ.

    Компактные габариты, что позволяет экономить на свободном пространстве при установке настенного котла.

Главный минус – меньшая мощность, а значит, и производительность такого варианта, по сравнению с напольным оборудованием. Следовательно, такой котел станет эффективным в обычных квартирах или в небольших частных домах, тогда как в более серьезных вариантах такой тип не подойдет.

Настенный вариант размещения оборудования накладывает определенные требования к его весу. Поэтому подобное оборудование изготавливается из облегченных материалов, которые не всегда способны выдержать длительную эксплуатацию. Это еще один недостаток настенных котлов – профилактический ремонт и обслуживание потребуется выполнять чаще, нежели аналогичные процессы с напольной модель

Напольные газовые котлы


Напольный вариант газового котельного оборудования считается более надежным и долговечным. Один из важнейших плюсов этого типа – более высокая мощность, позволяющая отапливать достаточно большие частные домовладения или несколько квартир одновременно.

Минусы напольных газовых котлов:

    Повышенный вес оборудования, так как основными материалами, использованными при их создании, являются сталь или чугун.

    Большие габариты моделей. Свободного места для этого оборудования нужно достаточно много, так как для его функционирования очень часто требуется установка дополнительных элементов, например, насосов, кранов, бойлера и так далее.

Два основных недостатка способствуют усложнению процесса монтажных работ и практически всегда требуют отдельного помещения для установки напольного котла, особенно если учесть тот факт, что подобные модели издают достаточно много шума при работе.

Отличия котлов разного типа

Газовые котлы различаются также по типу горелки и способу отвода продуктов горения.

Горелки бывают:

    Атмосферные. Естественная подача воздуха, необходимая для работы пламени. Требует присутствия хорошей вентиляции в помещениях. Характеризуются наличием открытой камеры сгорания.

    Вентиляторные, или как их ещё называют - турбинные.Принудительная подача воздуха. Характеризуются закрытой камерой сгорания и наличием автоматики. К минусам подобных систем можно отнести повышенный уровень шума и необходимость подсоединения к электрической сети (для работы встроенных вентиляторов).

    Диффузионно-кинетические. Нечто среднее между двумя первыми типами, когда воздух подается в камеру сгорания определенными порциями. Достаточно редкий вариант в бытовом оборудовании – обычно используется в промышленных условиях.

    Комбинированные. Позволяют использовать несколько типов топлива (газ, дрова или мазут) без смены горелки. Универсальность системы привела к появлению ряда недостатков: более низкий КПД, высокая стоимость, сложность конструкции, которая увеличивает время и затраты на профилактические и ремонтные работы.

По типу отвода продуктов горения газовые котлы делятся:

    На модели с естественной тягой. Продукты горения газовых котлов легче воздуха, поэтому этот факт и используется в оборудовании с естественной тягой. Для эксплуатации подобных моделей необходимо наличие специального дымохода с хорошей вытяжкой воздуха. Обычно такие котлы ставят в частных домах, где можно отдельно построить стояк для отвода газов.

    На оборудование с принудительным отводом газов. В этих моделях установлены вентиляторы, которые принудительно избавляют котлы от продуктов сгорания. Требуют подключения к электрической сети. Обычно такие газовые котлы устанавливаются в квартирах.

Преимущества и недостатки газовых котлов по сравнению с котлами на другом топливе

Главные преимущества газовых котлов:

    Топливо (природный газ) стоит дешевле, нежели использование электричества, дров, угля или мазута для аналогичного процесса.

    Коэффициент полезного действия газовых котлов выше, чем аналогичный параметр у аналогов.

Основные недостатки:

    Более высокая стоимость монтажных работ. Владельцу газового котла потребуется собрать дополнительные документы и получить разрешение от Газтехнадзора. Естественно, это требует траты времени и дополнительных денег.

    Для обеспечения безопасности работы газового оборудования потребуется установка дополнительных систем и конструкций. Это, прежде всего, монтаж дымохода и газовой сигнализации.

    Требует наличия газовой магистрали в большинстве случаев. Оборудование, работающее на баллонном газе, экономически невыгодное.

Что ещё необходимо знать при установке котлов

Газовые котлы считаются наиболее распространенным типом систем индивидуального отопления в частных владениях граждан нашей страны.

Современные газовые котлы управляются электронными платами, которые имеют множество датчиков для защиты от аварийных ситуаций.

Также платы управляют различными клапанами, турбинами, контролируют температуру и осуществляют автоподжиг газа.

Но они имеют недостаток - чувствительность к перепадам и скачкам напряжения.

Защитить плату от поломки и последующего ремонта поможет установка стабилизатора напряжения или реле контроля напряжения.

Стабилизатор поддерживает напряжение на постоянном уровне, сглаживая его, а реле контроля - отключает напряжение, если произошёл скачок.


Для хранения и транспортировки жидкого топлива и сжиженных газов предназначены специальные резервуары. Резервуар для жидкостей (керосин, бензин) называется ёмкостью для топлива. Резервуар для газа - газовым баллоном.

Баллоны продаются пустыми и представляют собой металлические (реже пластиковые) фляги с пробкой. Так как от трения жидкости о стенки ёмкости на пластике накапливается статическое электричество, металл предпочтительнее, как материал для изготовления резервуаров.

Устройство газовых баллонов

Газовый баллон - ёмкость цилиндрической формы, наполненная газом, находящимся под давлением (до 15 МПа). В верхней её части находится отверстие с резьбой, в которое ввинчивается запорный вентиль.

Для каждого наполнителя требуется специальная конструкция вентиля, поэтому важно соблюдать соответствие между типом емкости и топливом-наполнителем.

К герметичности и надёжности ёмкостей предъявляются высокие требования.

В комплектацию металлического газового резервуара входят:

  • вентиль;
  • корпус, состоящий из сварной обечайки, верхнего и нижнего днища;
  • опорный башмак - стальная кольцевая опора, для поддержания устойчивости в вертикальном положении;
  • предохранительный колпак - пластиковый или металлический элемент для защиты вентиля при транспортировке и эксплуатации;
  • кольцо горловины - металлическая деталь с резьбой, на которую навинчивается колпак;
  • иногда редуктор - приспособление для выравнивания уровня давления.

Стандартный вентиль состоит из:

  • корпуса;
  • запорного элемента;
  • маховика.

Корпус вентиля изготавливается из стали и имеет форму тройника.

На всех трёх частях вентиля резьба. Нижняя часть предназначена для крепления вентиля к баллону, верхняя для крепления штока клапана, а боковая для заглушки.

Запорный элемент состоит из штока и пропускного клапана. Клапан регулирует поток газа через корпус, шток передаёт крутящий момент с маховика на клапан.

Маховик соединяется со штоком с помощью гайки. При повороте маховика клапан открывает или закрывает поток.

Устройство баллона повторяет конструкцию газовой зажигалки. Внутри находится вещество в двух фазах: жидкой и газообразной. Пустое пространство над поверхностью сжиженного вещества заполнено им же, но уже в виде газа, который и поступает в надлежащее оборудование.

Виды газовых баллонов

Классификация по материалу корпуса

Металлические газовые баллоны

Баллон из металла - самое простое и экономное решение проблемы хранения газов. Его корпус изготавливается из малоуглеродистой или легированной стали. Выпускаются ёмкости из металла с объёмом 5, 10, 12, 20, 27, 40 или 50 литров.

Пятидесятилитровые резервуары хранятся только на открытом воздухе в специальном металлическом шкафу с соответствующей маркировкой. Ёмкости меньшего размера допускается устанавливать в помещении.

Масса нетто пустого металлического баллона в зависимости от объёма составляет 4-22 кг.

Композитные (полимерные) газовые баллоны

Если нет необходимости в хранении большого объёма газа, то разумнее выбрать композитный баллон.

Главное его преимущество по сравнению с металлическим - меньший вес.

Разница по этому показателю составляет до 70%, что даёт возможность с удобством пользоваться ёмкостью с полимерным корпусом любителям спортивного туризма, охоты и рыбалки.

Дополнительные достоинства композитных баллонов по сравнению с металлическими:

  • повышенная ударопрочность и взрывобезопасность (даже при воздействии открытого пламени);
  • конструкция, исключающая утечку наполнителя;
  • полностью исключено появление ржавчины на поверхности устройства;
  • исключено образование искр;
  • современный привлекательный внешний вид.

Композитный (полимерный) баллон представляет собой прозрачную колбу, наполненную сжиженным газом и помещённую в сменный пластиковый кожух.

Для изготовления колбы используются стекловолокно и эпоксидная смола.

В стекловолокно, которое используют для изготовления полимерных ёмкостей, не добавляют бор, что имеет значение для людей, уделяющих большое внимание экологической безопасности изделия. В процессе эксплуатации цвет колбы может измениться, но это не является дефектом.

Повышенная безопасность эксплуатации полимерных ёмкостей обеспечивается:

  • обратным клапаном избыточного давления;
  • плавкой (плавящейся) вставкой.

Под действием повышения температуры газ расширяется, вследствие чего появляются его излишки, которые и создают избыточное давление на стенки баллона.

Обратный клапан стравливает (выпускает) эти излишки равными порциями, понижая давление.

При воздействии особенно высокой температуры (например при пожаре), плавкая вставка расплавляется и выпускает газ, но процесс при этом управляем. Плавкая вставка срабатывает необратимо, после её срабатывания ёмкость придётся утилизировать.

Стабильная работа композитного баллона возможна при температуре внешней среды от -40 до + 60 градусов Цельсия. Масса нетто - до 8 кг.

Газовые картриджи

Для переносных газовых горелок, ламп, плит и т. п. производятся компактные одноразовые картриджи с объемом от 100 до 450 г. По внешнему виду они похожи на аэрозольные спреи.

Материал корпуса - сталь, покрытая оловом. При покупке нужно обращать внимание на диапазон температур, подходящий для конкретной модели картриджа. Некоторые виды портативных моделей не работают при температуре ниже -4 градусов Цельсия. Этот показатель зависит от состава смеси.

Изготовители наполняют картриджи летними, зимними и всесезонными смесями.

Ещё один параметр - тип подключения. Он должен совпадать с типом подключения на газовом приборе, иначе понадобится переходник или эксплуатация картриджа будет просто невозможна.

Классификация по назначению

По месту установки и назначению газовые баллоны условно подразделяются на:

  • бытовые - для плит, котлов и отопительных приборов;
  • туристические - для горелок, грилей, шашлычниц, осветительных и паяльных ламп, обогревателей, которые можно взять с собой в поход или на рыбалку;
  • автомобильные - для использования в автомобиле с двигателем, работающем на газовом топливе;
  • медицинские - для хранения дыхательных смесей в машинах скорой помощи, спасателей и пожарников, а также в отделениях интенсивной терапии и для кислородных коктейлей;
  • промышленные - для хранения газов, используемых в металлургии, фармацевтике, химической промышленности и т. д;
  • универсальные.

Помимо перечисленных сфер использования резервуаров для хранения газа существует ещё множество отраслей деятельности человека, в которых они необходимы.

Классификация по составу смеси

Газовый резервуар по названию наполнителя может быть:

  • пропановый;
  • бутановый;
  • ацетиленовый;
  • водородный;
  • азотный;
  • аргоновый;
  • углекислотный;
  • гелиевый;
  • со сжатым воздухом;
  • кислородный и т. д.

В бытовых целях и в туристических баллонах чаще всего используются пропан, бутан и их смеси.

Техническое название их название - СУГ (сжиженные углеводородные газы).

От состава смеси газов зависит подходящий температурный режим. В обычных климатических условиях разница небольшая. Параметр важен в случаях, если нужен баллон для работы в зимних условиях, на высокогорье или для специфических целей (например, для паяльной лампы).

При низких температурах лучше себя проявляет смесь пропана с изобутаном (изомер бутана). Эта смесь не наносит ущерба озоновому слою.

Вдыхание пропана или бутана опасно для человека, вплоть до смертельного исхода. Прямой контакт тела человека с жидким бутаном или струёй этого газа вызывает охлаждение до минус двадцати градусов Цельсия.

В пищевой промышленности эти вещества применяются как пищевые добавки, а в косметической в дезодорантах.

Пропан применяется при производстве растворителей.

Бутан используется в зажигалках, в качестве хладагента в и . По сравнению с привычным фреоном он менее производителен, но выигрывает по экологической безопасности.

Ацетилен применяют для сварки и резки металлов, в ракетных двигателях, в химической промышленности для получения взрывчатых веществ, каучука, пластмасс, уксусной кислоты и др. Вещество взрывоопасно при контакте с открытым воздухом, поэтому к нему добавляют активированный уголь или кизельгур (специальная пористая масса).

Водород используется в химической (при производстве аммиака), пищевой промышленности (для производства маргарина, растительных масел), при сварке, как ракетное топливо.

Азот применяется в химической, нефтегазовой, металлургической, фармацевтической, электронной промышленности.

Специфическое его использование - продувка и очистка ёмкостей, труб, а также глубокая заморозка и пожаротушение.

Аргон используется в накаливания, люминесцентных лампах, в металлургической и металлообрабатывающей промышленности при производстве многих металлов, в процессах, где необходимо исключить контакт расплавленной массы с кислородом (в том числе при пожарах), при сварке, в медицинских целях для наркоза и очистки воздуха, в пищевой промышленности, как упаковочный газ.

Углекислый газ заполняет огнетушители, им накачивают колёса . Он используется в торговле как хладагент и в пищевой промышленности при производстве газированных напитков.

Гелий необходим при сварке, резке, плавке металлов, для заполнения аэростатов, воздушных шаров, дыхательных смесей для , как хладагент в научных исследованиях. Сжиженный гелий - самая холодная жидкость на планете. Его транспортировку и хранение необходимо производить строго в вертикальном положении.

Сжатый воздух применяется во многих отраслях промышленности, но прежде всего для работы пневмоустройств и для получения инертных газов (гелия и др.).

Кислород используется для , обогащения этим веществом водоёмов, при производстве кислот и взрывчатых веществ, для получения «кислородных коктейлей».

Аммиак - ядовитый газ, сильнейший растворитель, поэтому нуждается в повышенном внимании к безопасности его транспортировки и хранения.

Его применяют при производстве азотной кислоты, удобрений, взрывчатых веществ и в медицине в виде 10%-ного раствора с бытовым названием - нашатырный спирт.

Хлор - ещё одно ядовитое вещество, которое применяют при производстве поливинилхлорида и искусственного каучука, в быту для отбеливания тканей, в медицине для дезинфекции.

Метан - СПГ (сжиженный природный газ), безопасен для человека. Его применяют для производства аммиака, удобрений, в огнетушителях, в медицине как снотворное, как топливо.

Хладоны или фреоны - используются в кондиционерах, и аэрозолях, а также при производстве пенопласта и пенополиуретана.

Классификация по способу подключения

При покупке газового баллона нужно выяснять тип подключения конкретной модели ёмкости и совместимость её с конкретным прибором.

Подключение может быть:

  • Цанговое (нажимное или зажимное). Соединение происходит при помощи цанги, которая представляет собой цилиндрическую деталь, выполняющую роль зажима для подключаемой трубы. Чтобы соединить баллон с цанговым подключением и оборудование с резьбовым понадобится специальный переходник.
  • Резьбовое (Еpi-gas). Подключение происходит за счёт соединения двух деталей с резьбой. Оно недостаточно надёжно для использования в газовом оборудовании, требует уплотнительных прокладок.
  • Клапанное (Easy Click). Такое подключение гораздо проще и надёжнее резьбового, но используется лишь в некоторых моделях, в основном в Европе. Главное его преимущество - наибольшая степень защищённости от утечки.

    Недостатком является то, что такие ёмкости продаются вместе с горелками и подобрать такой же, после того, как закончился наполнитель очень сложно.

  • Прокольное. Это тип подключения, предполагающий прокалывание оболочки баллона. Минус такого способа - невозможность отключить ёмкость от прибора до полного использования газа. Используется этот тип, в основном, для подключения небольших картриджей для туристических ламп, горелок, плит.

Какой лучше

Наиболее предпочтительными в быту являются композитные(полимерные) ёмкости. Преимущества по надёжности, компактности и другим показателям делают их очевидными лидерами, по сравнению с металлическими аналогами.

Недостаток полимерного резервуара заключается лишь в меньшем максимальном объёме.

Если для металлического баллона этот показатель составляет 50 литров, то для композитного 33,5 литров.

То есть, металлический резервуар целесообразно приобрести лишь в случае, когда предвидится большой расход газа, так как реже будет возникать необходимость заправки.

Объём, способ подключения и прочие параметры должны подбираться индивидуально, в соответствии с потребностями покупателя.

Если нужен запас топлива для портативного, в том числе туристического, газового оборудования, то выбирать изделие нужно среди компактных одноразовых картриджей с соответствующим типом подключения.

Выбор зависит и от того, при какой температуре будет использоваться газовое оборудование. На ёмкости указывается вид смеси - зимняя, летняя или всесезонная.

Эксплуатация газовых баллонов

Чтобы определить, каким веществом наполнен баллон, принято окрашивать его корпус в присвоенный этому газу цвет. Кислородный резервуар окрашивается в голубой, пропановый - в красный, водородный - в тёмно-зелёный цвет и т. д. Цвет корпуса композитного резервуара не имеет значения.

Ёмкость объёмом 50 литров может храниться только на улице в специальном металлическом шкафу с отверстиями для вентиляции, в вертикальном положении.

Шкаф устанавливается на несгораемом основании, исключающем просадку, и обязательно крепится к стене или основанию соседнего здания на расстоянии не менее 50 см от окон и дверей первого этажа и 3 м от окон и дверей цокольного этажа, а также выгребных ям и колодцев. Основание монтируется на высоте 15-20 см от земли.

Баллоны с объёмом до 40 л устанавливаются в помещении, не предназначенном для сна, вдали от электропроводов, на расстоянии не менее 50 см от , 1 метра от отопительного прибора и 5 метров от открытого пламени.

Нельзя устанавливать или хранить резервуары с топливом на чердаке или в подвале.

В помещении не должно быть легковоспламеняющихся и горючих веществ. Ёмкости с объёмом до 40 л тоже могут размещаться на улице с соблюдением тех же требований, что и к хранению пятидесятилитрового баллона.

Кислородные ёмкости допускается устанавливать под наклоном таким образом, чтобы вентиль располагался выше башмака. Остальные модели должны быть установлены вертикально.

Подключать баллон к приборам нужно через редуктор, который предназначен для выравнивания давления до уровня, необходимого для эксплуатации газовой плиты или другого устройства.

Запрещается пользоваться резервуарами для хранения газа лицам в возрасте до 14 лет. К использованию также не допускаются лица в состоянии алкогольного или наркотического опьянения.

Прежде чем приступить к использованию баллона, необходимо внимательно изучить инструкцию и правила безопасной эксплуатации оборудования.

  • Нельзя оставлять без присмотра работающее оборудование.
  • Запрещается использовать резервуар при обнаружении запаха газа или любой неисправности устройства и газовых коммуникаций. Для обнаружения утечки нельзя использовать открытое пламя.
  • Запрещается использовать газопроводные трубы не по назначению.
  • Нельзя подключать ёмкость с газом к самодельным приспособлениям.
  • Запрещается пользоваться баллоном с утраченным серийным номером и штрих-кодом (если они стёрлись при эксплуатации). Это условие важно соблюдать, так как необходимо соблюдать соответствие марки топлива типу ёмкости.
  • Периодически нужно проверять целостность клапана, который должен быть плотно ввинчен в соответствующее отверстие.
  • В зимний период замёрзший вентиль допускается отогревать только горячей водой.
  • Нельзя в одном помещении с кислородным резервуаром устанавливать ёмкости с другими газами.
  • Запрещается использовать наполнитель баллона на 100% объёма. Требуемое остаточное давление не ниже 0,05 МПа, для ацетиленовых ёмкостей не ниже 0,3 МПа.

Порядок работы:

  • Перед началом работы с газовым резервуаром или картриджем необходимо убедиться в исправности вентиля и резьбы бокового штуцера, для картриджа в исправности запорного устройства.
  • Проверить на утечку.
  • Прежде чем присоединить редуктор или шланг газового прибора к ёмкости, нужно ослабить регулировочный винт.
  • После соединения ещё раз проводится проверка на утечку. Для это место подключения покрывают мыльной пеной. Если происходит утечка, появятся пузырьки.
  • Если обнаружена утечка, необходимо оценить возможность самостоятельного устранения. Иногда достаточно подтянуть резьбовое соединение или сменить прокладку. Если таким образом утечка не устранена, то баллон подлежит отправке в ремонт.
  • Если баллон исправен, то для начала подачи газа медленно повернуть маховик.
  • После завершения использования баллона, установленного в помещении, вентили или краны на нём должны быть переведены в положение «закрыто».

Раз в пять лет металлический резервуар для хранения газа должен проверяться на исправность всех деталей.

Композитные изделия допустимо проверять один раз в 10 лет. Текущую проверку состояния ёмкости нужно проводить каждый раз перед, во время и после наполнения емкости топливом.

Маркировка годного изделия должна содержать следующую информацию:

  • товарный знак изготовителя;
  • дату изготовления;
  • клеймо ОТК завода-изготовителя;
  • номер баллона;
  • рабочее давление;
  • масса нетто;
  • объём;
  • дату проведения последнего контроля;
  • клеймо испытательного пункта;
  • пробное давление;
  • год проведения следующего осмотра.

Для баллонов с ацетиленом дополнительно должны быть указаны:

  • дата наполнения;
  • клеймо наполнительной станции;
  • дата проверки наполнителя;
  • клеймо, подтверждающее факт проверки наполнителя.

После осмотра принимается решение о пригодности устройства для дальнейшего использования. Если обнаружены дефекты и неисправности ёмкость для газа в опорожнённом виде отправляется в ремонт.

Неисправности и ремонт

Гарантийный и послегарантийный ремонт газового баллона должны осуществляться квалифицированным специалистом.

Попытки самостоятельно устранить неисправности приводят к трагическим последствиям.

Причины, по которым резервуар для газа признаётся непригодным для эксплуатации при текущей проверке и отправляется в ремонт:

  • неисправность вентиля, манометра (в том числе трещины на стекле, препятствующие снятию показаний);
  • повреждение, смещение или отсутствие башмака;
  • износ или неисправность резьбы кольца горловины;
  • нарушение герметичности, утечка;
  • для металлических ёмкостей несоответствие или нарушение окраски.

Резервуар для хранения газа подлежит утилизации, а не ремонту при обнаружении следующих недостатков:

  • значительные наружные повреждения: коррозия, вмятины, выпуклости, свищи, трещины, риски, глубиной более 10% толщины стенки ёмкости;
  • отсутствие паспортных данных, маркировки полностью или частично (если по остаточным сведениям нет возможности восстановить маркировку);
  • трещины на сварном шве и вокруг него шириной более 0,2 мм и более 30% его длины.

Все остальные ёмкости после гарантийного или постгарантийного ремонта пригодны для дальнейшего использования.

Гарантия

На газовые баллоны устанавливается срок гарантии 1-2 года со дня продажи, в зависимости от материала корпуса. Срок службы резервуара - до 30 лет.

Условия для выполнения заводом-изготовителем гарантийных обязательств:

  • наличие паспорта;
  • сохранность заводской маркировки и серийного номера на устройстве;
  • строгое соблюдение инструкции по транспортировке, хранению, установке, эксплуатации и обслуживанию устройства, а также руководства пользователя;
  • наличие гарантийного талона, заполненного продавцом;
  • для некоторых изготовителей обязательное условие - регистрация гарантии на официальном сайте завода;
  • отсутствие следов попытки самостоятельного ремонта или переклеивания маркировки.

Исполнение гарантийных обязательств берёт на себя производитель.

В них входят:

Гарантия не распространяется на кожух композитного баллона, а также на ёмкости со следующими внешними дефектами, возникшими при транспортировке и эксплуатации потребителем:

  • механические повреждения цилиндра от контакта с острым предметом или полученные в результате падения, удара - царапины, выбоины, вмятины, деформация, трещины, потёртости, вызвавшие уменьшение толщины стенки баллона;
  • потемнение цвета вентиля или появление вкраплений на его корпусе.

Производители газовых баллонов

Компания - французский производитель товаров для отдыха и туризма. Производство находится в Китае.

Одно из направлений её деятельности - изготовление шашлычниц, грилей, паяльных ламп, горелок, плит, портативных осветительных ламп. Все эти приборы оснащаются газовыми баллонами- картриджами собственного производства.

Многолетняя история компании подтверждает высокий уровень качества, надёжности и безопасности её продукции. Тип подключения – цанговый, прокольный или клапанный. Гарантия на картриджи - 6 месяцев.

Эта американская компания - партнёр Campingaz. создаёт свою продукцию, используя опыт и знания, накопленные любителями туризма, охоты и рыбалки со всего света.

В ассортимент компании входят портативные , горелки, лампы и картриджи для них. Тип подключения – резьбовой. Гарантия - 1 год.

Молодая компания по производству товаров для туризма. Завод находится в Китае. Кредо марки - качество за разумные деньги. Продукция компании сертифицирована и полностью соответствует требованиям международных стандартов.

Fire-Maple предлагает покупателям картриджи с резьбовым подключением объёмом 230 и 450 г. Гарантийный срок на них - 2 года.

Кредо американской компании - полностью переосмысленный процесс мобильного приготовления пищи.

Для своей продукции Jetboil выпускает газовые картриджи объёмом 100, 230 и 450 г со смесью пропана и изобутана, которая подходит для использования в зимнее время.

Kovea

Южно-корейская компания Kovea производит газовое оборудование и сопутствующие товары. Сама компания и её продукция отмечены многочисленным наградами, что подтверждает высокий уровень качества товаров этой марки.

В ассортименте компании баллоны с цанговым подключением объёмом 220 г и с резьбовым подключением объёмом 230 и 450 г. Гарантия на все виды продукции - 12 месяцев.

MSR

Американский бренд MSR выпускает товары для туризма и альпинизма. Производство находится в Южной Корее.

Баллоны этой марки наполнены смесью бутан и пропана в соотношении 80:20, которая показала хорошие результаты работы при низкой температуре. Встроенный поплавковый датчик поможет определить остаток газа. Объём картриджа 110, 226 и 450 г.

Шведская марка по производству снаряжения для туризма выпускает несколько видов газовых картриджей с резьбовым подключением. Среди них есть смеси для лета, зимы и всесезонные. Объём баллонов 100, 135, 190, 230 и 450 г.

Российская марка товаров для туризма и активного отдыха. Вся продукция этого бренда проходит проверку в реальных условиях до поступления в продажу. В ассортименте компании два вида смеси для газовых баллонов: всесезонная и зимняя. Объём резервуаров 220, 230, 336, 450 г. Способ подключения резьбовой и нажимной цанговый.

Tramp

Южно-корейская торговая марка Tramp выпускает портативные газовые баллоны со всесезонной смесью с цанговым и резьбовым подключением объёмом 220,230 и 450 г.


Жидкое и газообразное. Практически любая жидкость может обрести каждое из оставшихся двух. Многие твердые тела при плавлении, испарении или сгорании могут пополнить содержимое воздуха. Но не каждый газ может стать компонентом твердых материалов или жидкостей. Известны разные виды газов, которые отличаются между собой по свойствам, происхождению и особенностям применения.

Определение и свойства

Газ - это вещество, для которого характерно отсутствие или минимальное значение межмолекулярных связей, а также активная подвижность частиц. Основные свойства, которые имеют все виды газов:

  1. Текучесть, деформируемость, летучесть, стремление к максимальному объему, реакция атомов и молекул на понижение или повышение температуры, которая проявляется изменением интенсивности их движения.
  2. Существуют при температуре, в условиях которой повышение давления не приводит к переходу в жидкое состояние.
  3. Легко сжимаются, уменьшаясь в объеме. Это упрощает транспортировку и использование.
  4. Большинство сжижается путем сжатия в определенных границах давлений и критических значений теплоты.

В силу исследовательской труднодоступности описываются с помощью таких основных параметров: температура, давление, объем, молярная масса.

Классификация по месторождению

В природной среде все виды газов находятся в воздухе, земле и в воде.

  1. Составные воздуха: кислород, азот, углекислый газ, аргон, окись азота с примесями неона, криптона, водорода, метана.
  2. В земной коре азот, водород, метан и другие углеводороды, углекислый газ, оксид серы и прочие находятся в газообразном и жидком состоянии. Также существуют газовые залежи в твердой фракции в смеси с пластами воды при давлениях около 250 атм. при относительно низких температурах (до 20˚С).
  3. Водоемы содержат растворимые газы - хлороводород, аммиак и плохо растворимые - кислород, азот, водород, диоксид углерода и др.

Природные запасы намного превышают возможное количество искусственно созданных.

Классификация по степени горючести

Все виды газов, в зависимости от поведенческих характеристик в процессах возгорания и горения, делятся на окислители, инертные и горючие.

  1. Окислители способствуют возгоранию и поддерживают горение, но сами не горят: воздух, кислород, фтор, хлор, окись и двуокись азота.
  2. Инертные не участвуют в горении, однако имеют свойство вытеснять кислород и влиять на снижение интенсивности процесса: гелий, неон, ксенон, азот, аргон,
  3. Горючие загораются или взрываются, соединяясь с кислородом: метан, аммиак, водород, ацетилен, пропан, бутан, этан, этилен. Большинство из них характеризуется горением только в условиях определенного состава газовой смеси. Благодаря этому свойству, газ - вид топлива, на сегодняшний день самый распространенный. В этом качестве используются метан, пропан, бутан.

Углекислый газ и его роль

Является одним из наиболее распространенных газов в атмосфере (0,04 %). При нормальной температуре и атмосферном давлении имеет плотность 1,98 кг/м 3 . Может находится в твердом и жидком состоянии. Твердая фаза наступает при отрицательных показателях тепла и постоянном атмосферном давлении, она именуется «сухой лед». Жидкая фаза СО 2 возможна при повышении давления. Это свойство используется для хранения, транспортировки и технологического применения. Сублимация (переход в газообразное состояние из твердого, без промежуточной жидкой фазы) возможна при -77 - -79˚С. Растворимость в воде в соотношении 1:1 реализуется при t=14-16˚С.

Виды углекислого газа различают в зависимости от происхождения:

  1. Продукты жизнедеятельности растений и животных, выбросы вулканов, газовые выделения из недр земли, испарения с поверхности водоемов.
  2. Результаты деятельности человека, в том числе выбросы в результате сгорания всех видов топлива.

Как полезное вещество, применяется:

  1. В углекислотных огнетушителях.
  2. В баллонах для дуговой сварки в соответствующей среде СО 2 .
  3. В пищевой промышленности как консервант и для газирования воды.
  4. Как хладагент для временного охлаждения.
  5. В химической промышленности.
  6. В металлургии.

Будучи незаменимой составляющей жизни планеты, человека, работы машин и целых заводов, накапливается в нижних и верхних слоях атмосферы, задерживая выход тепла и создавая «парниковый эффект».

и его роль

Среди веществ природного происхождения и технологического назначения выделяют такие, которые имеют высокую степень горючести и теплотворности. Для хранения, транспортировки и применения используются следующие виды сжиженного газа: метан, пропан, бутан, а также пропан-бутановые смеси.

Бутан (С 4 Н 10) и пропан являются компонентами нефтяных газов. Первый сжижается при -1 - -0,5˚С. Транспортировка и применение в морозную погоду чистого бутана не осуществляется по причине его замерзания. Температура сжижения для пропана (С 3 Н 8) -41 - -42˚С, критическое давление - 4,27 МПа.

Метан (СН 4) - основная составляющая Виды источника газа - залежи нефти, продукты биогенных процессов. Сжижение происходит с помощью поэтапного сжатия и снижения теплоты до -160 - -161˚С. На каждом этапе сжимается в 5-10 раз.

Сжижение осуществляется на специальных заводах. Выпускаются пропан, бутан, а также их смесь для бытового и промышленного использования по отдельности. Метан применяется в промышленности и в виде топлива для транспорта. Последний также может выпускаться и в сжатом виде.

Сжатый газ и его роль

В последнее время популярность приобрел сжатый природный газ. Если для пропана и бутана применяется исключительно сжижение, то метан может выпускаться как в сжиженном, так и в сжатом состоянии. Газ в баллонах под высоким давлением в 20 МПа имеет ряд преимуществ перед общеизвестным сжиженным.

  1. Высокая скорость испарения, в том числе при отрицательных температурах воздуха, отсутствие негативных явлений накопления.
  2. Более низкий уровень токсичности.
  3. Полное сгорание, высокий КПД, отсутствие негативного влияния на оборудование и атмосферу.

Все чаще находит применение не только для грузовых, но и для легковых автомобилей, а также для котельного оборудования.

Газ - малозаметное, но незаменимое вещество для жизнедеятельности человека. Высокая теплотворная способность некоторых из них оправдывает широкое использование различных компонентов природного газа в качестве топлива для промышленности и транспорта.

Газовой горелкой называется устройство, обеспечивающее устойчивое сжигание газообразного топлива и регулирования процесса горения.

Основные функции горелок:

· Подача газа и воздуха к фронту горения;

· Смесеобразование;

· Стабилизация фронта пламени;

· Обеспечение требуемой интенсивности процесса горения газа.

Типы газовых горелок

1. Диффузионные горелки.

2. Инжекционные среднего и низкого давления.

3. Кинетические – с принудительной подачей воздуха низкого и среднего давления.

4. Комбинированные газомазутные горелки низкого и среднего давления.

Все горелки должны пройти государственные испытания в специальных испытательных центрах и иметь «Сертификат соответствия российским стандартам»

(Испытания: г.Шахты, Ростовской области, Свердловская область: «Уральский испытательный центр горелочных устройств».

Диффузионная горелка . Диффузия – процесс самопроизвольного проникновения одного вещества в другое.

В диффузионных горелках весь, необходимый для сгорания газа воздух – вторичный. Диффузионные горелки практически нигде не применяются. Диффузионная горелка представляет собой трубу с отверстиями для выхода газа, расстояние между отверстиями определяется с учетом распространения пламени от одного отверстия к другому. В такую горелку подается чистый газ без примеси воздуха. Горелки маломощные, требуют большой объем топочного пространства или подачу воздуха в топку вентилятором.

В промышленности на старых заводах применяется подово-щелевая диффузионная горелка, представляющая собой трубу Æ 57мм с высверленными на ней в 2 ряда отверстиями.

К преимуществам диффузионных горелок можно отнести простоту конструкции и устойчивое пламя.

Инжекционная горелка. Подсос воздуха за счет разряжения, создаваемого струей истекающего газа, называется инжекцией, или подсос воздуха осуществляется за счет энергии струи газа. Инжекционные горелки бывают с неполной (50…60%) инжекцией воздуха и полной инжекцией.

В инжекционных горелках в горении участвует воздух первичный (50…60%) и вторичный из объема топки. Горелки эти называются еще саморегулирующимися (т.е., чем больше подача газа, тем больше засасывается воздуха).

Недостатки этих горелок: нуждаются в стабилизации пламени от отрыва и проскока. Горение – с шумом при работе.

Достоинства горелок: простота конструкции, надежность в работе, возможность полного сжигания газа, возможность работы на низких и средних давлениях, подача воздуха за счет энергии струи газа, что экономит электрическую энергию (вентилятора).

Основными частями инжекционных горелок являются:

· Регулятор первичного воздуха (1);

· Сопло (2);

· Смеситель (3).


Регулятор первичного воздуха представляет собой вращающийся диск, шайбу или заслонку, с помощью которых регулируется подача первичного воздуха.

Сопло служит для превращения потенциальной энергии давления газа – в кинетическую (скоростную), т.е. для придания газовой струе такой скорости, которая обеспечивала бы необходимый поток воздуха.

Смеситель горелки состоит из 3-х частей:

· Инжектора (4);

· Конфузора (5);

· Диффузора (7).

В инжекторе создается разрежение и создается подсос первичного воздуха.

Самая узкая часть горелки – конфузор, в котором происходит выравнивание газо-воздушной смеси.

В диффузоре происходит окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Горелка с принудительной подачей воздуха. Это кинетическая или двухпроводная горелка. Воздух для сгорания газа подается в горелку принудительно вентилятором 100%, т.е. весь воздух первичный. Горелка эффективная, большой мощности, не требует большого топочного пространства. Работает на низком и среднем давлении газа, нуждается в стабилизации пламени от отрыва и проскока.

В горелке имеется завихритель воздуха, предназначенный для полного перемешивания газа с воздухом внутри горелки.

У горелки имеется керамический туннель, выполняющий функции стабилизатора.

Комбинированные газомазутные горелки. У этих горелок помимо газовой части имеется форсунка для распыливания жидкого топлива. Одновременное сжигание газа и жидкого топлива разрешается кратковременно при переходе с одного вида топлива на другой.

Форсунка представляет собой конструкцию типа труба в трубе. По центральной трубе подается жидкое топливо, по межкольцевому пространству подается распыливающий воздух или пар.


Газовая горелка - это устройство для смешения кислорода с газообразным топливом с целью подачи смеси к выходному отверстию и сжигания её с образованием устойчивого факела. В газовой горелке газообразное топливо, подаваемое под давлением, смешивается в смесительном устройстве с воздухом (кислородом воздуха) и образовавшаяся смесь поджигается на выходе из смесительного устройства с образованием устойчивого постоянного пламени.

Газовые горелки обладают широким спектром достоинств. Конструкция газовой горелки очень проста. Ее запуск занимает доли секунды и работает такая горелка практически безотказно. Газовые горелки используются для отопительных котлов или промышленного применения.

Сегодня существует два основных вида газовых горелок, их разделение ведется в зависимости от используемого метода образования горючей смеси (состоящей из топлива и воздуха). Различают атмосферные (инжекторные) и наддувные (вентиляционные) устройства. В большинстве случаев первый вид является частью котла и входит в его стоимость, второй же вид чаще всего приобретается отдельно. Наддувная горелка газовая в качестве инструмента горения более эффективна, поскольку в них подача воздуха осуществляется специальным вентилятором (встроенным в горелку).

Назначениями газовых горелок являются:

– подача газа и воздуха к фронту горения;

– смесеобразование;

– стабилизация фронта воспламенения;

– обеспечение требуемой интенсивности горения.

Типы газовых горелок:

Диффузионная горелка – горелка, в которой топливо и воздух
смешиваются пригорении.

Инжекционная горелка – газовая горелка с предварительным смешиванием газа с воздухом, у которой одна из сред, необходимых для горения, подсасывается в камеру горения другой среды (синоним– эжекционная горелка)

Горелка с полым предварительным смешением – горелка, в которой газ смешиваетсяс полным объемом воздуха перед выходными отверстиями.

Горелка не с полым предварительным смешением горелка, в которой газ не полностью смешивается с воздухом перед выходными отверстиями. Атмосферная газовая горелка инжекционная газовая горелка с частичным предварительным смешением газа с воздухом, использующая вторичный воздух среды, окружающей факел.

Горелка специального назначения горелка, принцип действия и конструкцию которой определяет тип теплового агрегата или особенности технологического процесса.

Рекуперативная горелка горелка, снабженная рекуператором для подогрева газа или воздуха



Регенеративная горелка – горелка, снабженная ре генератором для подогрева газа или воздуха.

Автоматическая горелка горелка, оборудованная автоматическими устройствами: дистанционным запальным, контроля пламени, контроля давления топлива и воздуха, запорными клапанами и средствами управления, регулирования и сигнализации.

урбинная горелка газовая горелка, в которой энергия вытекающих струй газа используется для привода встроенного вентилятора, нагнетающего воздух в горелку.

Запальная горелка вспомогательная горелка, служащая для розжига основной горелки.

Наиболее применимы на сегодняшний день классификация горелок по способу подачи воздуха, которые делятся на:

– бездутьевые – воздух поступает в топку за счет разрежения в ней;

– инжекционные – воздух засасывается за счет энергии струи газа;

– дутьевые – воздух подается в горелку или топку с помощью вентилятора.

Используют газовые горелки при различных давлениях газа: низком – до 5000 Па, среднем – от 5000 Па до 0,3 МПа и высоком – более 0,3 МПа. Чаще используют горелки, работающие на среднем и низком давлении газа.

Большое значение имеет тепловая мощность газовой горелки, которая бывает максимальная, минимальная и номинальная.

При длительной работе горелки, где газа расходуется большее количество без отрыва пламени, достигается максимальная тепловая мощность.

Минимальная тепловая мощность возникает при устойчивой работе горелки и наименьших расходах газа без проскока пламени.

При работе горелки с номинальным, обеспечивающим максимальный КПД при наибольшей полноте сжигания, расходом газа достигается номинальная тепловая мощность.

Допускается превышение максимальной тепловой мощности над номинальной не более чем на 20%. В случае если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, максимальная должна быть 12000 кДж/ч.



Еще одной важной особенностью газовых горелок является диапазон регулирования тепловой мощности.

На сегодня используется большое количество горелок различной конструкции. Выбирается горелка по определенным требованиям, к которым относятся: устойчивость при изменениях тепловой мощности, надежность в эксплуатации, компактность, удобство при обслуживании, обеспечение полноты сгорания газа.

Основные параметры и характеристики используемых газогорелочных устройств определены требованиями:

– тепловая мощность, вычисляемая как произведение часового расхода газа, м 3 /ч, на его низшую теплоту сгорания, Дж/м 3 , и являющаяся главной характеристикой горелки;

– параметры сжигаемого газа (низшая теплота сгорания, плотность, число Воббе);

– номинальная тепловая мощность, равная максимально достигаемой мощности при длительной работе горелки с минимальным " коэффициентом избытка а воздуха и при условии, что химический недожог не превышает установленных для данного типа горелок значений;

– номинальное давление газа и воздуха, соответствующее номинальной тепловой мощности горелки при атмосферном давлении в топочной камере;

– номинальная относительная длина факела, равная расстоянию по оси факела от выходного сечения (сопла) горелки при номинальной тепловой мощности до точки, где содержание углекислого газа при α = 1 равно 95% его максимального значения;

– коэффициент предельного регулирования тепловой мощности, равный отношению максимальной тепловой мощности к минимальной;

– коэффициент рабочего регулирования горелки по тепловой мощности, равный отношению номинальной тепловой мощности к минимальной;

– давление (разрежение) в топочной камере при номинальной мощности горелки;

– теплотехнические (светимость, степень черноты) и аэродинамические характеристики факела;

– удельная металло– и материалоемкость и удельный расход энергии, отнесенные к номинальной тепловой мощности;

– уровень звукового давления, создаваемый работающей горелкой при номинальной тепловой мощности.

Требования к горелкам

На основании опыта эксплуатации и анализа конструкции горелочных устройств можно сформулировать основные требования к их конструкции.

Конструкция горелки должна быть наиболее простой: без подвижных частей, без устройств, изменяющих сечение для прохода газа и воздуха и без деталей сложной формы, расположенных вблизи носика горелки. Сложные устройства при эксплуатации себя не оправдывают и быстро выходят из строя под действием высоких температур в рабочем пространстве печи.

Сечения для выхода газа, воздуха и газовоздушной смеси следует отрабатывать в процессе создания горелки. В процессе эксплуатации все эти сечения должны быть неизменными.

Количество газа и воздуха, подаваемого на горелку, следует измерять дроссельными устройствами на подводящих трубопроводах.

Сечения для прохода газа и воздуха в горелке и конфигурацию внутренних полостей следует выбирать таким образом, чтобы сопротивление на пути движения газа и воздуха внутри горелки было бы минимальным.

Давление газа и воздуха в основном должно обеспечивать требуемые скорости в выходных сечениях горелки. Желательно, чтобы подача воздуха в горелку была регулируемой. Неорганизованная подача воздуха в результате разрежения в рабочем пространстве или путем частичного инжектирования воздуха газом может допускаться только в особых случаях.

Конструкции горелок.

Основные элементы горелки газовой: смеситель и горелочная насадка со стабилизирующим устройством. В зависимости от назначения и условий эксплуатации горелки газовой её элементы имеют различное конструктивное исполнение.

В диффузионных горелках газовых в камеру сжигания подводится газ и воздух. Смешение газа и воздуха происходит в камере горения. Большинство диффузионных горелок газовых монтируют на стенках топки или печи. В котлах получили распространение т. н. подовые горелки газовые, которые размещаются внутри топки, в нижней её части. Подовая горелка газовая состоит из одной или нескольких газораспределительных труб, в которых просверлены отверстия. Труба с отверстиями устанавливается на колосниковой решётке или поду топки в щелевом канале, выложенным из огнеупорного кирпича. Через огнеупорный щелевой канал поступает требуемое количество воздуха. При таком устройстве горение струек газа, выходящих из отверстий в трубе, начинается в огнеупорном канале и заканчивается в топочном объёме. Подовые горелки создают малое сопротивление прохождению газа, поэтому они могут работать без принудительного дутья.

Диффузионные горелки газовые характеризуются более равномерной температурой по длине факела.

Однако эти горелки газовые требуют повышенного коэффициента избытка воздуха (по сравнению с инжекционными), а также создают более низкие тепловые напряжения топочного объёма и худшие условия для догорания газа в хвостовой части факела, что может приводить к неполному сгоранию газа.

Диффузионные горелки газовые применяют в промышленных печах и котлах, где требуется равномерная температура по длине факела. В некоторых процессах диффузионные горелки газовые незаменимы. Например, в стекловаренных, мартеновских и др. печах, когда идущий на горение воздух подогревается до температур, превышающих температуру воспламенения горючего газа с воздухом. Успешно применяются диффузионные горелки газовые и в некоторых водогрейных котлах.

В инжекционных горелках воздух для горения засасывается (инжектируется) за счёт энергии струи газа и их взаимное смешение происходит внутри корпуса горелки. Иногда в инжекционных горелках газовых подсасывание необходимого количества горючего газа, давление которого близко к атмосферному, осуществляется энергией струи воздуха. В горелках полного смешения (с газом перемешивается весь необходимый для горения воздух), работающих на газе среднего давления, образуется короткий факел пламени, а горение завершается в минимальном топочном объёме. В инжекционные горелках газовых частичного смешения поступает только часть (40 ÷ 60%) требующегося для горения воздуха (т. н. первичный воздух), который и смешивается с газом. Остальное количество воздуха (т. н. вторичный воздух) поступает к факелу пламени из атмосферы за счёт инжектирующего действия газо-воздушных струй и разрежения в топках. В отличие от инжекционных горелок газовых среднего давления, в горелках низкого давления образуется однородная газо-воздушная смесь с содержанием газа больше верхнего предела воспламенения; эти горелки газовые устойчивы в работе и имеют широкий диапазон тепловой нагрузки.

Для устойчивого горения газовоздушной смеси в инжекционных горелках газовых среднего и высокого давления применяют стабилизаторы: дополнительные поджигающие факелы вокруг основного потока (горелки с кольцевым стабилизатором), керамические туннели, внутри которых происходит горение газовоздушной смеси, и пластинчатые стабилизаторы, создающие завихрение на пути потока.

В топках значительных размеров инжекционные горелки газовые собирают в блоки из 2 и более горелок.

Широкое применение получили инжекционные горелки газовые инфракрасного излучения (т. н. беспламенные горелки), в которых основное количество получаемого при горении тепла передаётся излучением, т.к. газ сгорает на излучающей поверхности тонким слоем, без видимого факела. Излучающей поверхностью служат керамические насадки или металлические сетки. Эти горелки применяют для обогрева помещений с большой кратностью обмена воздуха (спортивные залы, торговые помещения, теплицы и др.), для сушки окрашенных поверхностей (тканей, бумаги и др.), разогрева мёрзлого грунта и сыпучих материалов, в промышленных печах. Для равномерного нагрева больших поверхностей (печей нефтеперерабатывающих заводов и др. промышленных печей) применяют т. н. панельные инжекционные излучающие горелки. В этих горелках газо-воздушная смесь из смесителя попадает в общий короб, а далее по трубкам смесь распределяется по отдельным туннелям, в которых и происходит её сгорание. Панельные горелки имеют малые габариты и широкий диапазон регулирования, малочувствительны к противодавлению в топочной камере.

Увеличивается применение газотурбинных горелок, в которых подача воздуха осуществляется осевым вентилятором, приводимым в движение газовой турбиной. Эти горелки предложены в начале 20 века (турбогорелка Эйкарта). Под действием реактивной силы вытекающего газа турбинка, вал и вентилятор приводятся во вращение в сторону, противоположную истечению газа. Производительность горелки регулируется величиной давления поступающего газа. Газотурбинные горелки могут применяться в топках котлов. Перспективными являются высоконапорные турбинные горелки газовые с самоподачей воздуха через рекуператоры и воздушные экономайзеры: газо-мазутные горелки газовые большой производительности, работающие на подогретом и холодном воздухе.

К горелкам предьявляют следующие требования:

1. Основные типы горелок должны изготавливаться на заводах серийно по техническим условиям. Если горелки изготовляют по индивидуальному проекту, то при вводе в эксплуатацию они должны пройти испытания для определения основных характеристик;

2. Горелки должны обеспечивать пропуск заданного количества газа и полноту его сжигания с минимальным коэффициентом расхода воздуха α, за исключением горелок специального назначения (например, для печей, в которых поддерживается восстановительная среда);

3. При обеспечении заданного технологического режима горелки должны обеспечить минимальное количество вредных выбросов в атмосферу;

4. Уровень шума, создаваемого горелкой, не должен превышать 85 дБ при измерении шумомером на расстоянии 1 м от горелки и на высоте 1,5 м от пола;

5. Горелки должны устойчиво работать без отрыва и проскока пламени в пределах расчетного диапазона регулирования тепловой мощности;

6. У горелок с предварительным полным смешением газа с воздухом скорость истечения газовоздушной смеси должна превышать скорость распространения пламени;

7. Для сокращения расхода электроэнергии на собственные нужды при использовании горелок с принудительной подачей воздуха сопротивление воздушного тракта должно быть минимальным;

8. Для уменьшения эксплуатационных расходов конструкция горелки и стабилизирующие устройства должны быть достаточно просты в обслуживании, удобны для ревизии и ремонта;

9. При необходимости сохранения резервного топлива горелки должны обеспечивать быстрый перевод агрегата с одного топлива на другое без нарушения технологического режима;

10. Комбинированные газомазутные горелки должны обеспечивать примерно одинаковое качество сжигания обоих видов топлива – газового и жидкого (мазута).

Диффузионные горелки

В диффузионные горелки воздух, необходимый для горения газа, поступает из окружающего пространства к фронту факела за счет диффузии.

Такие горелки применяются обычно в бытовых приборах. Их можно использовать также при увеличении расходе газа, если необходимо распределить пламя по большой поверхности. Во всех случаях газ подается в горелку без примеси первичного воздуха и смешивается с ним за пределами горелки. Поэтому иногда эти горелки называют горелками внешнего смешивания.

Наиболее простые по конструкции диффузионные горелки (рис. 7.1) представляют собой трубу с высверленными отверстиями. Расстояние между отверстиями выбирается с учетом скорости распространения пламени от одного отверстия к другому. Эти горелки имеют небольшие тепловые мощности и применяются при сжигании природных и низкокалорийных газов под небольшими водонагревательными устройствами.

Рис. 7.1. Диффузионные горелки

Рис.7.2. Подовая диффузионная горелка:

1 – регулятор воздуха; 2 – горелка; 3 – смотровое окно; 4 – центрующий стакан; 5 – горизонтальный тоннель; 6 – выкладки из кирпича; 7 – колосниковая решетка

К промышленным горелкам диффузионного типа относятся подовые щелевые горелки (рис. 7.2). Обычно они представляют собой трубу диаметром до 50 мм, в которой просверлены отверстия диаметром до 4 мм в два ряда. Канал представляет собой щель в поде котла, откуда и название горелок – подовые щелевые.

Из горелки 2 газ выходит в топку, куда из-под колосников 7 поступает воздух. Газовые струйки направляются под углом к потоку воздуха и равномерно распределяется по его сечению. Процесс смешения газа с воздухом осуществляется в специальной щели, сделанной из огнеупорного кирпича. Благодаря такому устройству усиливается процесс смешивания газа с воздухом и обеспечивается устойчивое зажигание газовоздушной смеси.

Колосниковая решетка закладывается огнеупорным кирпичом и оставляются несколько щелей, в которых размещаются трубы с просверленными отверстиями для выхода газа. Воздух под колосниковую решетку подается вентилятором или в результате разряжения в топке. Огнеупорные стенки щели являются стабилизаторами горения, предотвращают отрыв пламени и одновременно повышают процесс теплоотдачи в топке.

Инжекционные горелки.

Инжекционными называются горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа. Основной элемент инжекционной горелки – инжектор, подсасывающий воздух из окружающего пространства внутрь горелок.

В зависимости от количества инжектируемого воздуха горелки могут быть полного предварительного смешения газа с воздухом или с неполной инжекцией воздуха.

Горелки с неполной инжекцией воздуха. К фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают на низком давлении газа. Их называют инжекционными горелками низкого давления.

Основными частями инжекционных горелок (рис. 7.3) являются регулятор первичного воздуха, форсунка, смеситель и коллектор.

Регулятор первичного воздуха 7 представляет собой вращающийся диск или шайбу и регулирует количество первичного воздуха, поступающего в горелку. Форсунка 1 служит для превращения потенциальной энергии давления газа в кинетическую, т.е. для придания газовой струе такой скорости, которая обеспечивает подсос необходимого воздуха. Смеситель горелки состоит из трех частей: инжектора, конфузора и диффузора. Инжектор 2 создает разрежение и подсос воздуха. Самая узкая часть смесителя – конфузор 3, выравнивающий струю газовоздушной смеси. В диффузоре 4 происходит окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.

Из диффузора газовоздушная смесь поступает в коллектор 5, который и распределяет газовоздушную смесь по отверстиям 6. Форма коллектора и расположение отверстий зависит от типа горелок и их назначения.

Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их широко применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Горелки используют также в чугунных отопительных котлах.

Рис. 7.3. Инжекционные атмосферные газовые горелки

а – низкого давления; б – горелка для чугунного котла; 1 –форсунка. 2 – инжектор, 3 – конфузор, 4 – диффузор, 5 – коллектор. 6 – отверстия, 7 – регулятор первичного воздуха

Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.

Важной характеристикой инжекционных горелок неполного смешения является коэффициент инжекции – отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м 3 газа необходимо 10 м 3 воздуха, а первичный воздух составляет 4 м 3 , то коэффициент инжекции равен 4:10=0,4.

Характеристикой горелок является также кратность инжекции – отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м 3 сжигаемого газа инжектируется 4 м 3 воздуха, кратность инжекции равна 4.

Достоинство инжекционных горелок: свойство их саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.

Смесительные горелки. Горелки с принудительной подачей воздуха.

Горелки с принудительной подачей воздуха широко применяют в различных тепловых устройствах коммунальных и промышленных предприятий.

По принципу действия эти горелки подразделяются на горелки с предварительным смешением газа (рис.7.4)и топлива и на горелки без предварительной подготовки газовоздушной смеси. Горелки обоих типов могут работать на природном, коксовом, доменном, смешанном и других горючих газах низкого и среднего давления. Диапазон рабочего регулирования - 0,1 ÷ 5000 м 3 /ч.

Воздух в горелки подается центробежными или осевыми вентиляторами низкого и среднего давления. Вентиляторы могут быть установлены на каждой горелке или один вентилятор на определенную группу горелок. При этом, как правило, весь первичный воздух подается вентиляторами, вторичный же практически не влияет на качество горения и определяется только подсосом воздуха в топочную камеру через неплотности топочной арматуры и лючки.

Преимуществами горелок с принудительной подачей воздуха являются: возможность применения в топочных камерах с различным противодавлением, значительный диапазон регулирования тепловой мощности и соотношения газ - воздух, сравнительно небольшие размеры факела, незначительный шум при работе, простота конструкции, возможность предварительного подогрева газа или воздуха и использования горелок большой единичной мощности.

Горелки низкого давления применяют при расходе газа 50 ÷ 100 м 3 /ч, при расходе 100 ÷ 5000 целесообразно использовать горелки среднего давления.

Давление воздуха в зависимости от конструкции горелки и необходимой тепловой мощности принимается равным 0,5 ÷ 5кПа.

Для лучшего перемешивания топливно-воздушной смеси в большинство горелок газ подается небольшими струями под различным углом к потоку первичного дутьевого воздуха. С целью интенсификации смесеобразования потоку воздуха придают турбулентное движение при помощи специально установленных завихряющих лопаток, тангенциальных направляющих и т.д.

К наиболее распространенным горелкам с принудительной подачей воздуха внутреннего смешения относят горелки с расходом газа до 5000 м3/ч и более. В них можно обеспечить заранее заданное качество подготовки топливно-воздушной смеси до ее подачи в топочную камеру.

В зависимости от конструкции горелки процессы смешения топлива и воздуха могут быть различными: первый - подготовка топливно-воздушной смеси непосредственно в камере смешения горелки, когда в топку поступает готовая газовоздушная смесь, второй - когда процесс смешения начинается в горелке, а заканчивается в топочной камере. Во всех случаях скорость истечения газовоздушной смеси разна 16...60 м/с. Интенсификации смесеобразования газа и воздуха достигают путем струйной подачи газа, применения регулируемых лопаток, тангенциального подвода воздуха и пр. При струйной подаче газа используют горелки с центральной подачей газа (от центра горелки к периферии) и с периферийной.

Максимальное давление воздуха на входе в горелку - 5 кПа. Она может работать при противодавлении и разрежении в топочной камере. В данных горелках в отличие от горелок внешнего смешения пламя менее светящееся и относительно небольших размеров. В качестве стабилизаторов наиболее часто применяют керамические тоннели. Однако могут быть использованы все рассмотренные выше способы.

Горелка типа ГНП с принудительной подачей воздуха и центральной подачей газа, сконструированная специалистами института Теплопроект, предназначена для использования в топочных устройствах со значительными тепловыми напряжениями. В этих горелках предусмотрено закручивание потока воздуха с помощью лопаток. В комплект горелки входят два сопла: сопло типа А, применяемое для короткофакельного сжигания газа с 4÷6 отверстиями для выхода газа, направленными перпендикулярно или под углом 45° к потоку воздуха, и сопло типа Б, используемое для получения удлиненного факела и имеющее одно центральное отверстие, направленное параллельно потоку воздуха. В последнем случае предварительное смешение газа и воздуха происходит значительно хуже, что приводит к удлинению факела.

Стабилизация факела, обеспечивается применением огнеупорного тоннеля из шамотного кирпича класса А. Горелки могут работать на холодном и подогретом воздухе. Коэффициент избытка воздуха - 1,05. Горелки такого типа применяют в паровых котлах, хлебопекарной промышленности.

Двухпроводная газомазутная горелка ГМГ предназначена для сжигания природного газа или малосернистых видов жидкого топлива типа дизельного, бытового, мазутов флотских Ф5, Ф12 и пр. Допускается совместное сжигание газа и жидкого топлива.

Газовое сопло горелки имеет два ряда отверстий, направленных под углом 90° друг к другу. Отверстия на боковой поверхности сопла позволяют подавать газ в закрученный поток вторичного дутьевого воздуха, отверстия на торцевой поверхности - в закрученный поток первичного воздуха.

Процесс образования газовоздушной смеси в горелках с принудительной подачей воздуха начинается непосредственной в самой горелке, а завершается уже в топке. В процессе сжигания газ сгорает коротким и несветящимся пламенем. Требующийся для сгорания газа воздух, подается в горелку принудительно с помощью вентилятора. Газ и воздух подаются по отдельным трубам.

Данный вид горелок еще называют двухпроводными или смесительными горелками. Чаще всего используются горелки, работающие на низком давлении газа и воздуха. Также некоторые конструкции горелок используются и при среднем давлении.

Устанавливаются горелки в топках котлов, в нагревательных и сушильных печах и т.д.

Принцип работы горелки с принудительной подачей воздуха:

Газ поступает в сопло 1 с давлением до 1 200 Па и выходит из него через восемь отверстий диаметром 4,5 мм. Эти отверстия должны быть расположены под углом 30° к оси горелки. Специальные лопатки, которые задают вращательное движение потоку воздуха, расположены в корпусе 2 горелки. В процессе работы газ в виде мелких струек поступает в закрученный поток воздуха, который помогает хорошему смешиванию. Горелка заканчивается керамическим тоннелем 4, имеющим запальное отверстие 5.

Рис. 7.4. Горелка с принудительной подачей воздуха:

1 - сопло; 2 - корпус; 3 - фронтальная плита; 4 – керамический тоннель.

Горелки с принудительной подачей воздуха обладают рядом достоинств:

–высокая производительность;

–широкий диапазон регулирования производительности;

–возможность работы на подогретом воздухе.

В существующих разнообразных конструкциях горелок интенсификация процесса образования газовоздушной смеси достигается следующими способами:

–разбиением потоков газа и воздуха на мелкие потоки, в которых проходит смесеобразование;

–подачей газа в виде мелких струек под углом к потоку воздуха;

–закручиванием потока воздуха различными приспособлениями, встроенными внутрь горелок.

Комбинированные горелки.

Комбинированными называются горелки, работающие одновременно или раздельно на газе и мазуте или на газе и угольной пыли.

Их применяют при перебоях в подаче газа, когда необходимо срочно найти другой вид топлива, когда газовое топливо не обеспечивает необходимого температурного режима топки; подача газа на данный производится только в определенное время (ночью) для выравнивания суточной неравномерности газопотребления.

Наибольшее распространение получили газомазутные горелки с принудительной подачей воздуха. Горелка состоит из газовой, воздушной и жидкостной частей. Газовая часть представляет собой полое кольцо, имеющее штуцер для подвода газа и восемь трубочек для распыления газа.

Жидкостная часть горелки состоит из мазутной головки и внутренней трубки, заканчивающейся форсункой 1 (рис. 7.5).

Подача мазута в горелку регулируется вентилем. Воздушная часть горелки состоит из корпуса, завихрителя 3, воздушной заслонки 5, с помощью которой можно регулировать подачу воздуха. Завихритель служит для лучшего перемешивания струи мазута с воздухом. Давление воздуха 2÷3 кПа, давление газа до 50 кПа, а давление мазута до 0,1 МПа.

Рис. 7.5. Комбинированная газомазутная горелка:

1 – мазутная форсунка, 2 – воздушная камера, 3 – завихритель, 4 – трубки выхода газа, 5 – воздушная регулировочная заслонка.

Применение комбинированных горелок дает более высокий эффект, чем одновременное использование газовых горелок и мазутных форсунок или газовых пылеугольных горелок.

Комбинированные горелки необходимы для надежной и бесперебойной работы газоиспользующего оборудования и установок крупных промышленных предприятий, электростанций и других потребителей, для которых перерыв в работе недопустим.

Рассмотрим принцип действия комбинированной пылегазовой горелки конструкции Мосэнерго (рис. 7.6)

При работе на угольной пыли в топку по кольцевому каналу 3 центральной трубы подается смесь первичного воздуха с угольной пылью, а вторичный воздух поступает в топку через улитку 1.

В качестве резервного топлива служит мазут, в этом случае в центральной трубе устанавливается мазутная форсунка. При переводе горелки на газовое топливо мазутную форсунку заменяются кольцевым каналом, по которому подается газовое топливо.

В центральной части канала устанавливается труба с чугунным наконечником 2. Наконечнике 2 косые щели, через которые выходит газ и пересекается с потоком закрученного воздуха, выходящего из улитки 1. В усовершенствованных конструкциях горелок в наконечнике вместо щелей предусмотрено 115 отверстий диаметром 7 мм. В результате скорость выхода газа увеличивается почти в два раза (150 м/с).

Рис. 7.6. Комбинированная пылегазовая горелка с центральной подачей газа.

1 – улитка для закручивания воздушного потока, 2 – наконечник газоподводящих труб,

3 – кольцевой канал для подачи смеси первичного воздуха с угольной пылью.

В новых конструкциях горелки применяется периферийная подача газа, при которой газовые струйки, имеющие более высокую скорость, чем воздушные, пересекают закрученный поток воздуха, движущийся со скоростью 30 м/с, под прямым углом. Такое взаимодействие потоков газа и воздуха обеспечивает быстрое и полное перемешивание, в результате чего газовоздушная смесь сгорает с минимальными потерями.

7.3. Автоматизация процессов сжигания газа .

Свойства газового топлива и современные конструкции газовых горелок создают благоприятные условия для автоматизации процессов сжигания газа. Автоматическое регулирование процесса горения повышает надежность и безопасность эксплуатации газоиспользующих агрегатов и обеспечивает их работу в соответствии с наиболее оптимальным режимом.

Сегодня в газоиспользующих установках применяются системы частичной или комплексной автоматизации.

Комплексная газовая автоматика состоит из следующих основных систем:

– автоматика регулирования;

– автоматика безопасности;

– аварийной сигнализации;

–телотехнического контроля.

Регулирование и управление процессом горения определяется работой газовых приборов и агрегатов в заданном режиме и обеспечением оптимального режима сгорания газа. Для этого регулирование процесса горения предназначена автоматика регулирования бытовых, коммунальных и промышленных газовых приборов и агрегатов. Таким образом, поддерживается постоянная температура воды в баке у емкостных водонагревателей, постоянное давление пара у паровых котлов.

Подача газа к горелкам газоиспользующих установок прекращается автоматикой безопасности в случае:

– погасание факела в топке;

– понижении давления воздуха перед горелками;

– овышении давления пара в котла;

– повышении температуры воды в котле;

– понижении разряжения в топке.

Отключение этих установок сопровождается соответственными звуковыми и световыми сигналами. Не менее важен и контроль загазованности помещения, в котором расположены все газовые приборы и агрегаты. Для этих целей устанавливают электромагнитные клапаны, которые прекращают подачу газа в случаях превышения ПДК в окружающем воздухе СН 4 и СО 2 .

Добиться оптимального режима в условиях технологического процесса можно при помощи приборов теплотехнического контроля

Условия эксплуатации газоиспользующего оборудования определяют степень его автоматизации.

Дистанционное управление газоиспользующих установок достигается путем использования приборов контроля и сигнализации.

Расчеты горелок.

В газомазутных топках, снабженных современными горелочными устройствами с автоматическим управлением процессом сжигания, стало возможным сжигать природные газы и мазут с малыми избытками воздуха практически при отсутствии или малой величине химической неполноты сгорания (менее 0,5%). Поэтому рекомендуется процесс сжигания этих топлив поддерживать с коэффициентом избытка воздуха за пароперегревателем не выше 1,03 ÷ 1,05.