Самодельные импульсные блоки питания большой мощности. Мощный импульсный блок питания своими руками. Видео о данном импульсном блоке питания

ДАННЫЙ МАТЕРИАЛ СОДЕРЖИТ БОЛЬШОЕ КОЛИЧЕСТВО АНИМИРОВАННЫХ ПРИЛОЖЕНИЙ!!!

Для браузера Microsoft Internet Extlorer необходимо временно выключить некоторые функции, а именно:
- выключить интегрированные бары от Яндекса, Гугла и т.д.
- выключить строку состояния (снять галочку):

Выключить адресную строку:

По желанию можно выключить и ОБЫЧНЫЕ КНОПКИ, но получившейся площади экрана уже достаточно

В остальном больше ни каких регулировок производить не нужно - управление материалом производится при помощи встроенных в материал кнопок, а убранные панели вы всегда можете вернуть на место.

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСТВА

Прежде чем приступить к описанию принципа работы импульсных источников питания следует вспомнить некоторые детали из общего курса физики, а именно что такое электричество, что такое магнитное поле и как они зависят друг от друга.
Сильно глубоко мы не будем углублятся и о причинах возникновения электричества в различных объектах мы тоже умолчим - для этого нужно просто тупо перепечатать 1/4 курса физики, поэтому будем надеятся, что читатель знает что такое электричество не по надписям на табличах "НЕ ВЛЕЗАЙ - УБЬЕТ!". Однако для начала напомним какое оно бывает, это самое электричество, точнее напряжение.

Ну а теперь, чисто теоритически, предположим, что в качестве нагрузки у нас выступает проводник, т.е. самый обычный отрезок провода. Что происходит в нем, когда через него протекает ток наглядно показанно на следующем рисунке:

Если с проводником и магнитным полем вокруг него все понятно, то сложим проводник не в кольцо, а в несколько колец, чтобы наша катушка индуктивности проявила себя активней и посмотрим что будет происходить дальше.

На этом самом месте имеет смысл попить чаю и дать мозгу усвоить только что узнанное. Если же мозг не устал, или же эта информация уже известна, то смотрим дальше

В качестве силовых транзисторов в импульсных блока питания используются биполярные транзисторы, полевые(MOSFET) и IGBT. Какой именно силовой транзистор использовать решает только производитель устройств, поскольку и те, и другие и третьи имеют и свои достоинства, и свои недостатки. Однако было бы не справедливым не заметить, что биполярные транзисторы в мощных источника питания практически не используются. Транзисторы MOSFET лучше использовать при частотах преобразования от 30 кГц до 100 кГц, а вот IGBT "любят частоты пониже - выше 30 кГц уже лучше не использовать.
Биполярные транзисторы хороши тем, что они довольно быстро закрываются, поскольку ток коллектора зависит от тока базы, но вот в открытом состоянии имеют довольно большое сопротивление, а это означает, что на них будет довольно большое падение напряжения, что однозначно ведет к лишнему нагреву самого транзистора.
Полевые имеют в открытом состоянии очень маленькое активное сопротивление, что не вызывает большого выделения тепла. Однако чем мощнее транзистор, тем больше его емкость затвора, а для ее зарядки-разрядки требуются довольно большие токи. Данная зависимость емкости затвора от мощности транзистора вызвана тем, что используемые для источников питания полевые транзисторы изготавливаются по технологии MOSFET, суть которой заключается в использовании параллельного включения нескольких полевых транзисторов с изолированным затвором и выполненных на одном кристалле. И чем мощенее транзистор, тем большее количество параллельных транзисторов используется а емкости затворов суммируются.
Попыткой найти компромисс являются транзисторы, выполненные по технологии IGBT, поскольку являются составными элементами. Ходят слухи, что получилисьони чисто случайно, при попытке повторить MOSFET, но вот вместо полевых транзисторов, получились не совсем полевые и не совсем биполярные. В качестве управляющего электрода выступает затвор встроенного внутрь полевого транзистора не большой мощности, который своими истоком-стоком уже управляет током баз мощных биполярных транзисторов, включенных параллельно и выполненных на одном кристалле данного транзстора. Таким образом получается довольно маленькая емкость затвора и не очень большое активное сопротивление в открытом состоянии.
Основных схем включения силовой части не так уж и много:
АВТОГЕНЕРАТОРНЫЕ БЛОКИ ПИТАНИЯ . Используют положительную связь, обычно индукционную. Простота подобных источников питания накладывает на них некоторые ограничения - подобные источники питания "любят" постоянную, не меняющуюся нагрузку, поскольку нагрузка влияет на параметры обратной связи. Подобные источники бывают как однотактные, так и двухтактные.
ИМПУЛЬСНИНЫЕ БЛОКИ ПИТАНИЯ С ПРИНУДИТЕЛЬНЫМ ВОЗБУЖДЕНИЕМ . Данные источники питания так же делятся на однотактыные и двухтактные. Первые хоть и лояльней относятся к меняющейся нагрузке, но все же не очень устойчиво поддерживают необходимый запас мощности. А аудиотехника имеет довольно большой разброс по потреблению - в режиме паузы усилитель потребляет единицы ватт (ток покоя оконечного каскада), а на пиках аудиосигнала потребление может достигать десятков или даже сотен ватт.
Таким образом единственным, максимально приемлемым вариантом импульсных источником питания для аудиотехники является использование двухтактных схем с принудительным возбуждением. Так же не стоит забывать о том, что при высокочастотном преобразовании необходимо уделять более тщательное внимание к фильтрации вторичного напряжения, поскольку появление помех по питанию в звуковом диапазоне сведут на нет все старания по изготовлению импульсного источника питания для усилителя мощности. По этой же причине частота преобразования уводится по дальше от звукового диапазона. Самой популярной частотой преобразования раньше была частота в районе 40 кГц, но современная элементная база позволяет производить преобразование на частотах гораздо выше - вплоть до 100 кГц.
Различают два базовых вида данных импульсных источников - стабилизированные и не стабилизированные.
Стабилизированные источники питания используют широтноимпульсную модуляцию, суть которой заключается в формровании выходного напряжения за счет регулировки длительности подаваемого в первиную обмотку напряжения, а компенсация отсутствия импульсов осуществляется LC цепочками, включенными на выходе вторичного питания. Большим плюсом стабилизированных источников питания является стабильность выходного напряжения, не зависящая ни от входного напряжения сети 220 В, ни от потребляемой мощности.
Не стабилизированные просто управляют силовой частью с постоянной частотой и длительностью импульсов и от обычного трансформатора отличаются лишь габаритами и гораздо меньшими емкостями конденсаторов вторичного питания. Выходное напряжение напрямую зависит от сети 220 В, и имеет небольшую зависисмость от потребляемой мощности (на холостом ходу напряжение несколько выше рассчетного).
Самыми популярными схемами силовой части импульсных источников питания являются:
Со средней точкой (ПУШ-ПУЛЛ). Используются обычно в низковольтных источниках питания, поскольку имеет некоторые особенности в требованиях к элементной базе. Диапазон мощностей довольно большой.
Полумостовые . Самая популярная схема в сетевых ипульсных источниках питания. Диапазон мощностей до 3000 Вт. Дальнейшее увеличение мощности возможно, но уже по стоимости доходит до уровня мостового варианта, поэтому несколько не экономично.
Мостовые . Данная схема не экономична на малых мощностях, поскольку содержит удвоенное количество силовых ключей. Поэтому чаще всего используется на мощностях от 2000 Вт. Максимальные мощности находятся в пределах 10000 Вт. Данная схемотехника является основной при изготовлении сварочных аппаратов.
Рассмотрим подробнее кто есть кто и как работает.

СО СРЕДНЕЙ ТОЧКОЙ

Как было показанно - данную схемотехнику силовой части не рекомендуется использовать для создания сетевых источников питания, однако НЕ РЕКОМЕНДУЕТСЯ не значит НЕЛЬЗЯ. Просто необходимо более тщательно подходить к выбору элементной базы и изготовлению силового трансформатора, а так же учитывать довольно большие напряжения при разводке печатной платы.
Максимальную же популярность данный силовой каскад получил в автомобильной аудитехнике, а так же в источниках бесперебойного питания. Однако на этом поприще данная схемотехника притерпевает некоторые неудобства, а именно ограничение максимальной мощности. И дело не в элементной базе - на сегодня совсем не являются дефицитными MOSFET транзисторы с мгновенными значениями тока сток-исток в 50-100 А. Дело в габаритной мощности самого трансформатора, а точнее в первичной обмотке.
Проблема заключается... Впрочем для большей убедительности воспользуемся программой расчетов моточных данных высокочастотных трансформаторов.
Возьмем 5 колец типоразмера К45х28х8 с проницаемостью M2000HM1-А, заложем частоту преобразования 54 кГц и первичную обмотку в 24 В (две полуобмотки по 12 В) В итоге получаем, что мощность данный сердечник сможет развить 658 вт, но вот первичная обмотка должна содержать 5 витков, т.е. по 2,5 витка на одну полуобмотку. Как то не естественно маловато... Однако стоит поднять частоту преобразорвания до 88 кГц как получится всего 2 (!) витка на полуобмотку, хотя мощность выглядит весьма заманчиво - 1000 Вт.
Вроде с такими результатами можно смириться и равномерно по всему кольцу распределить 2 витка тоже, если сильно постараться, можно, но вот качество феррита оставляет желать лучшего, да и M2000HM1-А на частотах выше 60 кГц уже сам по себе греется довольно сильно, ну а на 90 кГц его уже обдувать надо.
Так что как не крути, но получается замкнутый круг - увеличивая габариты для получения большей мощности мы слишком сильно уменьшаем количество витков первичной обмотки, увеличивая частоту мы опять же уменьшаем количество витков первичной обмотки, но еще в довеско получаем лишнее тепло.
Именно по этой причине для получения мощностей свыше 600 Вт используют сдвоенные преобразователи - один модуль управления выдает управляющие импульсны на два одинаковых силовых модуля, содержащих два силовых трансформатора. Выходные напряжения обоих трансформаторов суммируются. Именно таким способом организуется питания сверхмощных автмобильных усилителей заводского производства и с одного силовго модуля снимается порядка 500..700 Вт и не более. Способов суммирования несколько:
- суммирования переменного напряжения. Ток в первичные обмотки трансформаторов подается синхронно, следовательно и выходные напряжения синхронны и могут соединяться последовательно. Соединять вторичные обмотки параллельно от двух трансформаторов не рекомендуется - небольшая разница в намотке или качестве феррита приводит в большим потерям и снижению надежности.
- суммирование после выпрямителей, т.е. постоянного напряжения. Самый оптимальный вариант - один силовой модуль выдает положительное напряжение для усилителя мощности, а второй - отрицательное.
- формирование питания для усилителей с двух уровневым питанием сложением двух идентичных двухполярных напряжений.

ПОЛУМОСТОВАЯ

Полумостовая схема имеет довольно много достоинств - проста, следовательно надежна, легка в повторении, не содержит дефицитных деталей, может выполняться как на биполярных, так и на полывых транзисторах. Транзисторы IGBT в ней тоже прекрано работают. Однако слабое место у нее есть. Это проходные конденсаторы. Дело в том, что при больших мощностях через них протекает довольно большой ток и качество готового импульсного источника питания на прямую зависит от качества именно этого компонента.
А проблема заключается в том, что конденсаторы постоянно перезаряжаются, следовательно они должны иметь минимальное сопротивление ВЫВОД-ОБКЛАДКА, поскольку при большом сопротивлении на этом участке будет выделяться довольно много тепла и в конце концов вывод просто отгорит. Поэтому в качестве проходных конденсаторов необходимо использовать пленочные конденсаторы, причем емкость одного конденсатора может достигать емкости 4,7 мкФ в крайнем случае, если используется один конденсатор - схема с одни кондлесатром тоже довольно часто используется, по принципу выходного каскада УМЗЧ с однполярным питанием. Если же используются два конденсатора на 4,7 мкФ (точка их соединения подключена к обмотке трансформатора, а свободные выводы к плюсовой и минусовой шинам питания), то данная комплектация вполне пригодна для питания усилителей мощности - суммарная емкость для переменного напряжения преобразования складывает и в итоге получается равной 4,7 мкФ + 4,7 мкФ = 9,4 мкФ. Однако данный вариант не расчитан для догосрочного непрерывного использования с максимальной нагрузкой - необходимо разделять суммарную емкость на несколько конденсаторов.
При необходимости получения больших емкостей (низкая частота преоразования) лучше использовать несколько конденсаторов меньшей емкости (например 5 штук по 1 мкФ соединенных параллельно). Однако большое количество включенных параллельно конденсаторов довольно сильно увеличивает габариты устройства, да и суммарная стоимость все гирлянды конденсаторов получается не маленькой. Поэтому, при необходимости получить большую мощность имеет смысл воспользоваться мостовой схемой.
Для полумостового варианта мощности выше 3000 Вт не желательны - уж больно громоздкими будут платы с проходными конденсаторами. Использование в качестве проходных конденсаторов электролитических имеет смысл, но лишь на мощностях до 1000 Вт, посокольку на больших частотах электролиты не эффективны и начинаю греться. Бумажные конденсаторы в каестве проходных показали себя очень хорошо, но вот их габариты...
Для большей наглядности мы приводим таблицу зависимости реактивного сопротивления конденсатора от частоты и емкости (Ом):

Емкость конденсатора

Частота преобразования

На всякий случай напоминаем, что при использовании двух конденсаторо (один на плюс, второй на минус) финальная емкость будет равна сумме емкостей этих конденсаторов. Итоговое сопротивление не выделает тепла, поскольку реактивное, но может повлиять на КПД источника питания при максимальных нагрузках - напряжение на выходе начнет уменьшаться, не смотря на то, что габаритная мощность силового трансформатора вполне достаточна.

МОСТОВАЯ

Мостовая схема пригодна для любых мощностей, но наиболее эффективна на больших мощностях (для сетевых источников питания это мощности от 2000 Вт). Схема содержит две пары силовых транзисторов, управляемых синхроно, но необходимость гальванической развязки эмиттеров верхенй пары вносит некоторые неудобства. Однако эта проблема вполне решаема при использовании трансформаторов управления или же специализированных микросхем, например для полевых транзисторов вполен можно использовать IR2110 - специализированная разработка компании International Rectifier .

Однако силовая часть не имеет ни какого смысла, если ею не управляет модуль управления.
Специализированных микросхем, способных управлять силовой частью импульсных источников питания довольно много, однако наиболее удачной разработкой в этой области является TL494, которая появилась еще в прошлом веке, тем не менее не утратила своей актуальности, поскольку содержит ВСЕ необходимые узлы для управления силовой частью импульсных источников питания. О популярности данной микросхемы прежде всего говорит выпуск ее сразу несколькими крупными производителями электронных компонентов.
Рассмотрим принцип действия данной микросхемы, которую с полной ответственностью можно назвать контроллером, поскольку она обладет ВСЕМИ необходимыми узлами.



ЧАСТЬ II

В чем же заключается собственно ШИМ способ регулировки напряжения?
В основу способа положена все таже инерционность индуктивности, т.е. ее не способность мгновенно пропустить ток. Поэтому регулируя длительность импульсов можно изменять финальное постоянное напряжение. Причем для импульсных источников питания это лучше делать в первичных цепях и таким образом экономить средства на создание источника питания, поскольку данный источник будет исполнять сразу две роли:
- преобразование напряжения;
- стабилизацию выходного напряжения.
Причем тепла при этом будет выделяться гораздо меньше по сравнению с линейным стабилизатором, установленным на выходе не стабилизированно импульсного блока питания.
Для больше наглядности стоит посмотреть рисунок, приведенный ниже:

На рисунке приведена схема-эквивалент импульсного стабилизатора в котором в качестве силового ключа выступает генерато прямоугольных импульсов V1, а R1 в качестве нагрузки. Как видно из рисунка при фиксированной амплитуде выходных импульсов в 50 В, изменяя длительность импульсов можно в широких пределах изменять подаваемое на нагрузку напряжение, причем с очень маленькими тепловыми поетрями, зависищами лишь от параметров используемого силового ключа.

С принципами работы силовой части разобрались, с управлением тоже. Осталось соединить оба узла и получить готовый импульсный источник питания.
Нагрузочная способность контроллера TL494 не очень большая, хотя ее хватает для управления одной парой силовых транзисторов типа IRFZ44. Однако для более мощных транзисторов уже необходимы усилители тока, способные развить необходимы тока на управляющих электродах силовых транзисторов. Поскольку мы стараемся снизить габариты источника питания и уйти подальше от звукового диапазона, то оптимальным использованием в качестве силовых транзисторов будут полевые транзисторы, выполненные по технологии MOSFET.


Варианты структур при изготовлении MOSFET.

С одной стороны - для управления полевым транзистором не нужны большие токи - они открываются напряжением. Однако в этой бочке меда есть ложка дегтя, в данном случае заключающаяся в том, что хоть затвор и имеет огромное активное сопротивление, не потребляющее тока для управления транзистором, но затвор имеет емкость. А для ее заряда и разряда как раз и нужны большие токи, поскольку на больших частотах преобразования реактивное сопротивление уже снижается до пределов которые нельзя игнорировать. И чем больше мощность силового MOSFET транзистора тем больше емкость его затвора.
Для примера возьмем IRF740 (400 V, 10A), у которого емкость затвора составляет 1400 пкФ и IRFP460 (500 V, 20 A), у которого емкость затвора составляет 4200 пкФ. Поскольку и у первого, и у второго напряжение затвора не должно быть более ± 20 В, то в качестве управляющих импульсов возьмем напряжение 15 В и посмотрим в симмуляторе что происходит при частоте генератора в 100 кГц на резисторах R1 и R2, которые включены последовательно с конденсаторами на 1400 пкФ и 4200 пкФ.


Тестовый стенд.

При протекании через активную нагрузку тока на ней образуется падение напряжения, по этой величене и можно судить о мгновенных значениях протекающего тока.


Падение на резисторе R1.

Как видно из рисунка сразу при появлении управляющего импульса на резисторе R1 падает примерно 10,7 В. При сопротивлении 10 Ом это означает, что мгновенное значения тока достигает 1, А (!). Как только импульс заканчивается на резисторе R1 падает так же 10,7 В, следовательно и для того, чтобы разрядить конденсатор С1 требуется ток около 1 А..
Для зарядки-разрядки емкости в 4200 пкФ через резистор 10 Ом требуется 1,3 А, поскольку на резисторе 10 Ом падает 13,4 В.

Вывод напрашивается сам собой - для зарядки-разрядки емкостей затворов необходимо, чтобы каска, работающий на затворы силовых транзисторов, выдерживал довольно большие токи, не смотря на то, что суммарное потребление довольно мало.
Для ограничения мгновенных значений тока в затворах полевых транзисторов обычно используют токоограничивающие резисторы от 33 до 100 Ом. Чрезмерное уменьшение этих резисторов повышает мгновенное значение проеткающих токов, а увеличение - увеличивает длительность работы силового транзистора в линейном режиме, что влечет необоснованный нагрев последних.
Довольно часто используется цепочка состоящая из соединенных параллельно резистора и диода. Данная хитрость используется прежде всего для того, чтобы разгрузить управляющий каскад на время зарядки и ускорить разрядку емкости затвора.


Фрагмент однотактного преобразователя.

Таким образом достигается не мгновенное появление тока в обмотке силового трансформатора, а несколько линейное. Хотя это увеличивает температуру силового каскада, но довольно ощутимо снижает выбосы самоидуции, которые неизбежно появляются при подаче прямоугольного напряжения в обмотку трансформатора.


Самоиндукция в работе однотактного преобразователя
(красная линия - напряжение на обмотке трансформатора, синяя - напряжение питания, зеленая - импульсы управления).

Итак с теоритической частью разобрались и можно подвести кое какие итоги:
Для создания импульсного источника питания необходим трансформатор, сердечник у которого изготовлен из феррита;
Для стабилизации выходного напряжения импульсного источника питания необходим ШИМ метод с которым вполне успешно справляется контроллер TL494;
Силовая часть со средней точкой наиболее удобна для низковольных импульсных источников питания;
Силовая часть полумостовой схемотехники удобна для малых и средних мощностей, а ее параметы и надежность во многом зависят от коичества и качества проходных конденсаторов;
Силовая часть мостового типа более выгодна для больших мощностей;
При использовании в силовой части MOSFET не стоит забывать о емкости затворов и расчитывать управляющие элементы силовыми транзисторами с поправками на эту емкость;

Поскольку с отдельными узлами разобрались переходим к финальному варианту импульсного источника питания. Поскольку и алгоритм и схемотехника всех полумостовых источников практически одинакова, то для разъяснения какой элемент для чего нужен разберем по косточкам самый популярный, мощностью 400 Вт, с двумя двуполярными выходными напряжениями.


Осталось отметить некоторые ньюнасы:
Резисторы R23, R25, R33, R34 служат для создания RC-фильтра, который крайне желателен при использовании электролитических конденсаторах на выходе импульсных источниках. В идеале конечно же лучше использовать LС-фильтры, но поскольку "потребители" не очень мощные можно вполне обойтись и RC-фильтром. Сопротивление данных резисторов может использоваться от 15 до 47 Ом. R23 лучше мощностью 1 Вт, остальные на 0,5 Вт вполне достаточно.
С25 и R28 - снабер снижающий выбросы самоиндукции в обмотке силового трансформатора. Наиболее эффективны при емкостях около выше 1000 пкф, но в этом случае на резисторе выделяется слишком много тепла. Необходимы в случае когда после выпрямительных диодов вторичного питания отсутствуют дроссели (подавляющее большинство заводской аппаратуры). Если дроссели используются эффективность снаберов не так заметна. Поэтому мы их ставим крайне редко и хуже источники питания от этого не работают.
Если некоторые номиналы элементов отличаются на плате и принципиальной схеме эти номиналы не критичны - можно использовать и те и другие.
Если на плате имеются элементы отсутствующие на принципиальной схеме (обычно это конденсаторы по питанию) то можно их не ставить, хотя с ними будет лучше. Если же решили устанавливать, то не электролитические конденсаторы можно использовать на 0,1...0,47 мкФ, а электролитические такой же емкости как и те, которые получаются с ними включенными параллельно.
На плате ВАРИАНТ 2 Возле радиаторов имеется прямоугольная часть которая высверливается по периметру и на нее устанавливаются кнопки управления источником питания (вкл-выкл). Необходимость данного отверстия обусловлена тем, что вентилятор на 80 мм не умещается по высоте, для того, чтобы закрепить его к радиатору. Поэтому вентиялтор устанавливается ниже основания печатной платы.

ИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
СТАБИЛИЗИРОВАННОГО ИМПУЛЬСНОГО ИСТОЧНИКА ПИТАНИЯ

Для начала внимательно следует ознакомиться с принципиальной схемой, впрочем это следует делать всегда, перед тем как приступать к сборке. Данный преобразователь напряжения работает по полумостовой схеме. В чем отличие от остальных подробно рассказанно .

Принципиальная схема упакованна WinRAR старой версии и выполнена на странице WORD-2000, поэтому с распечаткой данной страницы проблем возникнуть не должно. Здесь же мы рассмотрим ее фрагментами, поскольку хочется сохранить высокую читаемость схемы, а целиком на эеран монитора она умещается не совсем корректно. На всякий случай можно пользоватся этим чертежом для представления картины в целом, но лучше распечатать...
На рисунке 1 - фильтр и выпрямитель сетевого напряжения. Фильтр предназначен прежде всего для исключения проникновения импульсных помех от преобразователя в сеть. Выполнен на L-C основе. В качестве индуктивности используется ферритовый сердечник любой формы (стержневые лучше не нужно - большой фон от них) с намотанной одинарной обмоткой. Габариты сердечника зависят от мощности источника питания, поскольку чем мощнее источник, тем больше помех он будет создавать и тем лучше нужен фильтр.


Рисунок 1.

Примерные габариты сердечников в зависимости от мощности источника питания сведены в таблицу 1. Обмотка мотается до заполения сердечника, диаметр(ы) провода следует выбирать из расчета 4-5 А/мм кв.

Таблица 1

МОЩНОСТЬ ИСТОЧНИКА ПИТАНИЯ

КОЛЬЦЕВОЙ СЕРДЕЧНИК

Ш-ОБРАЗНЫЙ СЕРДЕЧНИК

Диаметр от 22 до 30 при толщине 6-8 мм

Ширина от 24 до 30 при толщине 6-8 мм

Диаметр от 32 до 40 при толщине 8-10 мм

Ширина от 30 до 40 при толщине 8-10 мм

Диаметр от 40 до 45 при толщине 8-10 мм

Ширина от 40 до 45 при толщине 8-10 мм

Диаметр от 40 до 45 при толщине 10-12 мм

Ширина от 40 до 45 при толщине 10-12 мм

Диаметр от 40 до 45 при толщине 12-16 мм

Ширина от 40 до 45 при толщине 12-16 мм

Диаметр от 40 до 45 при толщине 16-20 мм

Ширина от 40 до 45 при толщине 16-20 мм

Здесь следует немного пояснить почему диаметр (ы ) и что такое 4-5 А/мм кв .
Данная категория источников питания относится в высокочастотной. Теперь вспомним курс физики, а именно то место, в котором говорится, что на высоких частотах ток течет не по всему сечению проводника, а по его поверхности. И чем выше частота, тем большая часть сечения проводника остается не задействованной. По этой причине в импульсных высокочастотных устройствах обмотки выполняют с помощью жгутов, т.е. берется несколько более тонкив проводников и складывается вместе. Затем получившийся жгут немного скручивают вдоль оси, чтобы отдельные проводники не торчали в разные стороны во время намотки и этим жгутом наматывают обмотки.
4-5 А/мм кв означает, что напряженность в проводнике может достигать от четырех до пяти Ампер на квадрантный миллиметр. Этот параметр отвечает за нагрев проводника за счет пандения в нем напряжения, ведь проводник имеет, хоть и не большое, но все же сопротивление. В импульсной технике моточные изделия (дроссели, трансформаторы) имеют сравнительно не большие габариты, следовательно охлаждаться они будут хорошо, поэтому напряженность можно использовать именно 4-5 А/мм кв. А вот для традиционных трансформаторов, выполненных на железе, этот параметр не должен превышать 2,5-3 А/мм кв. Сколько проводов и какого сечения поможет расчитать табличка диаметров. Кроме этого табличка подскажет какую мощность можно получить при использовании того или иного количества проводов имеющегося в наличии провода, если использовать его в качестве первичной обмотки силового трансформатора. Открыть табличку .
Емкость конденсатора С4 должна быть не ниже 0,1 мкФ, если он используется вообще. Напряжение 400-630 В. Формулировка если он используется вообще используется не напрасно - основным фильтром является дроссель L1, а его индуктивность получилась довольно большой и вероятность проникновения ВЧ помех сводится практически до нулевых значений.
Диодный мост VD служит для выпрямления переменного сетевого напряжения. В каечстве диодного моста используется сборка типа RS (торцевые выводы). Для мощности в 400 Вт можно использовать RS607, RS807, RS1007 (на 700 В, 6, 8 и 10 А соответственно), поскольку установочные габариты у этих диодных мостов одинаковые.
Конденсаторы С7, С8, С11 и С12 необходимы для снижения импульсных помех, создаваемых диодами во время приближения переменного напряжения к нулю. Емкость данных конденсаторов от 10 нФ до 47 нФ, напряжение не ниже 630 В. Однако проведя несколько замеров было выяснено, что L1 хорошо справляется и с этими помехами, а для исключения влияния по первичным цепях вполне хватает конденсатора С17. Кроме этого свою лепту вносят и емкости конденсаторов С26 и С27 - для первичного напряжения они являются двумя, соединенными последовательно конденсаторами. Поскольку их номиналы равны, то итоговая емккость делится на 2 и эта емкость уже не только служит для работы силового трансформатора, но еще и подавляет импульсные помехи по первичному питанию. Исходя из этого мы отказались от использования С7, С8, С11 и С12, ну а если кому то уж очень хочется их установить, то на плате, со стороны дорожек места вполне достаточно.
Следующий фрагмент схемы - ограничители тока на R8 и R11 (рисунок 2). Данные резисторы необходимы для снижения тока зарядки электролитических конденсаторов С15 и С16. Данная мера необходима, поскольку в момент включения необходим очень большой ток. Ни предохранитель, ни диодный мост VD не способны, пусть даже кратковременно выдержать такой мощный токовый бросок, хотя индуктивность L1 и ограничивает максимальное значение протекающего тока, в данном случае этого не достаточно. Поэтому используются токоограничивающие резисторы. Мощность резисторов в 2 Вт выбрана не столько из за выделяемого тепла, а по причине довольно широкого резистивного слоя, способного кратковременно выдержать ток в 5-10 А. Для источников питания мощностью до 600 Вт можно использовать резисторы мощностью и 1 Вт, либо использовать один резистор мощностью 2 Вт, необходимо лишь соблюсти условие - суммарное сопротивление даннйо цепи не должно быть меньше 150 Ом и не должно быть больше 480 Ом. При слишком низком сопротивлении увеличивается шанс разрушения резистивного слоя, при слишком выском - увеличивается время заряда С15, С16 и напряжение на них не успеет приблизится к максимальному значению как сработает реле К1 и контактам этого реле придется коммутировать слишком большой ток. Если вместо резисторов МЛТ использовать проволочные, то суммарное сопротивление можно уменьшить до 47...68 Ом.
Емкость конденсаторов С15 и С16 выбирается так же в зависимости от мощности источника. Вычислить необходиму емкость можно воспользовавшись не сложной формулой: НА ОДИН ВАТТ ВЫХОДНОЙ МОЩНОСТИ НЕОБХОДИМ 1 МКФ ЕМКОСТИ КОНДЕНСАТОРОВ ФИЛЬТРА ПЕРВИЧНОГО ПИТАНИЯ . Если есть сомнения в своих математических способностях можно воспользоваться табличкой , в которой просто ставите мощность источника питания, который вы собираетесь изготовить и смотрите сколько и каких конденсаторов Вам необходимо. Обратите внимание на то, что плата расчитана на установку сетевых электролитических конденсаторов диаметром 30 мм .


Рисунок 3

На рисунке 3 показанны гасящие резисторы основная цель которых сформировать стартовое напряжение. Мощность не ниже 2 Вт, на плату устанавливаются парами, друг над дружкой. Сопротивление от 43 кОм до 75 кОм. ОЧЕНЬ желательно, чтобы ВСЕ резисторы были одного номилала - в этом случае тепло распределяется равномерно. Для небольших мощностей используется маленькое реле с небольшим потреблением, поэтому можно обойтись 2 или тремя гасящими резисторами. На плате устанавливаются друг над дружкой.


Рисунок 4

Рисунок 4 - стабилизатор питания модуля управления - в любом корпусе интергарльный стабилизатор на +15В. Необходим радиатор. Размер... Обычно хватает радиатора от предпоследнего каскада отечественных усилителей. Можно попросить что-то в телемастерских - на телевезионных платах обычно 2-3 подходящих радиатора находятся. Второй как раз используется для охлаждения транзистора VT4, управляющего оборотами вентилятора (рисунок 5 и 6). Конденсаторы С1 и С3 можно использовать и 470 мкФ на 50 В, но такая замена подходит лишь для источников питания, использующих определенный тип реле, у которых сопротивление катушки довольно большое. На более мощных источниках используется более мощное реле и уменьшение емкости С1 и С3 крайне не желательно.


Рисунок 5

Рисунок 6

Транзистор VT4 - IRF640. Можно заменить на IRF510, IRF520, IRF530, IRF610, IRF620, IRF630, IRF720, IRF730, IRF740 и т.д.. Главное - он должен быть к орпусе ТО-220, иметь максимальное напряжение не ниже 40 В и максимальный ток не менее 1 А.
Транзистор VT1 - практически любой прямой транзистор с максимальным током более 1 А, желательно с маленьким напряжение насыщения. Одинаково хорошо становятся транзисторы в корпусах ТО-126 и ТО-220, поэтому можно подобрать уйму замен. Если прикрутить небольщой радиатор то вполне подойдет даже КТ816 (рисунок 7).


Рисунок 7

Реле К1 - TRA2 D-12VDC-S-Z или TRA3 L-12VDC-S-2Z . По сути - самое обыкновенное реле с обмоткой на 12 V и контактной группой способной коммутировать 5 А и более. Можно использовать реле, используемые в некоторых телевизрах для включения петли размагничивания, только учтите - контактная группа в подобных реле имеет другую цоколевку и даже если она становится на плату без проблем следует проверить какие выводы замыкаются при подаче напряжения на катушку. Отличаются TRA2 от TRA3 тем, что TRA2 имеют одну контактную группу, способную коммутировать ток до 16 А, а TRA3 имеет 2 контактные группы по 5А.
Кстати сказать - печатная плата предлагается в двух вариантах, а именно с использованием реле и без такового. В варианте без реле не используется система мягкого старта первичного напряжения, поэтому данный вариант пригоден для источника питания мощностью не более 400 Вт, поскольку без токоограничения включать на "прямую" емкость более 470 мкФ крайне не рекомендуется. Кроме того - в качестве диодного моста VD ОБЯЗАТЕЛЬНО должен использоваться мост с максимальным током 10 А, т.е. RS1007. Ну а роль реле в варианте без софт-старта выполняет светодиод. Фунция дежурного режима сохранена.
Кнопки SA2 и SA3 (подразумевается, что SA1 - сетевой выключатель) - кнопки любого типа без фиксации, для которых можно изготовить отдельную печатную плату, а можно закрупить и другим удбным способом. Необходимо помнить, что контакты кнопок гальванически связанны с сетью 220 В , поэтому необходимо исключить вероятность их касания в процессе эксплуатации источника питания .
Аналогов контроллера TL494 довольно много, можно использовать любой, только учтите - у разных производителей возможны некоторые различия параметров. Например при замене одного производителя на другого может измениться частота преобразования, но не сильно, а вот выходное напряжение может измениться вплоть до 15%.
IR2110 в принципе не дефецитный драйвер, да и аналогов у нее не так много - IR2113, но IR2113 имеет большее количество вариантов корпуса, поэтому будьте внимательны - необходим корпус DIP-14.
При монтаже платы вместо микросхем лучше использовать разъемы для микросхем (панельки), идеально - цанговые, но можно и обычные. Данная мера позволит избежать некоторых недоразумений, поскольку брака среди и TL494 (нет выходных импульсов, хотя тактовый генератор работает), и среди IR2110 (нет управляющих импульсов на верхний транзистор) довольно много, так что условия гарантии следует согласовать с продавцом микросхем.


Рисунок 8

На рисунке 8 показана силовая часть. Диоды VD4...VD5 лучше использовать быстрые, например SF16, но при отсутствии таковых HER108 тоже вполне подойдут. С20 и С21 - суммарная емкость не менее 1 мкФ, поэтому можно использовать 2 конденсатора по 0,47 мкФ. Напряжение не менее 50 В, идеально - пленочный конденсатра на 1 мкФ 63 В (в случае пробоя силовых транзисторов пленочный остается целым, а многослойная керамика погибает). Для источников питания мощностью до 600 Вт сопротивление резисторов R24 и R25 может быть от 22 до 47 Ом, поскольку емкости затворов силовых транзисторов не очень велики.
Силовые транзисторы могут быть любыми из приведенных в таблице 2 (корпус ТО-220 или ТО-220Р).

Таблица 2

Наименование

Емкость затвора,
пкФ

Макс напряжение,
В

Макс ток,
А

Тепловая мощн,
Вт

Сопротивление,
Ом


Если тепловая мощность не превышает 40 Вт значит корпус транзистора полностью пластмассовый и требуется теплоотвод большей площади, чтобы не доводить температуру кристалла до критического значения.

Напряжение затвора для всех не более ±20 В

Тиристоры VS1 и VS в принципе марка значения не имеет, главное - максимальный ток должен составлять не менее 0,5 А и корпус должен быть ТО-92. Мы используем либо MCR100-8, либо MCR22-8.
Диоды для слаботочного питания (рисунок 9) желательно выбирать с маленьким временем восстановления. Вполне подойдут диоды серии HER, например HER108, но можно использоваь и другие, например SF16, MUR120, UF4007. Резисторы R33 и R34 на 0,5 Вт, сопротивление от 15 до 47 Ом, причем R33=R34. Служебная обмотка, работающая на VD9-VD10 должна быть рассчитана на 20 В стабилизированного напряжения. В таблице расчета обмоток она отмечена красным.


Рисунок 9

Силовые выпрямительные диоды могут использоваться как в корпусе ТО-220, так и в корпусе ТО-247. В обоих вариантах печатной платы подразумевается, что диоды будут установлены друг над дружкой и с платой соединяться проводниками (рисунок 10). Разумеется, что при установке диодов следует использовать термопасту и изолирующие прокладки (слюду).


Рисунок 10

В качестве выпрямительных диодов желательно использовать диоды с маленьким временем восстановления, поскольку от этого зависит нагрев диодов на холостом ходу (сказывается внутренняю емкость диодов и они просто греются сами по себе, даже без нагрузки). Список вариантов сведен в таблицу 3

Таблица 3

Наименование

Максимальное напряжение,
В

Максимальный ток,
А

Время восстановления,
нано сек

Трансформатор тока выполняет две роли - используется именно как трансформатор тока и как индуктивность, включенная последовательно с первичной обмоткой силового трансформатора, что позволяет несколько снизить скорость появляения тока в первичной обмотке, что ведет к уменьшению выбросов самоиндукции (рисунок 11).


Рисунок 11

Строгих формул для расчета данного трансформатора нет, но вот соблюсти некоторые ограничения настоятельно рекомендуется:

ДЛЯ МОЩНОСТЕЙ ОТ 200 ДО 500 ВТ - КОЛЬЦО ДИАМЕТРОМ 12...18 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 400 ДО 800 ВТ - КОЛЬЦО ДИАМЕТРОМ 18...26 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 800 ДО 1800 ВТ - КОЛЬЦО ДИАМЕТРОМ 22...32 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 1500 ДО 3000 ВТ - КОЛЬЦО ДИАМЕТРОМ 32...48 ММ
КОЛЬЦА ФЕРРИТОВЫЕ, ПРОНИЦАЕМОСТЬЮ 2000, ТОЛЩИНОЙ 6...12 ММ

КОЛИЧЕСТВО ВИТКОВ ПЕРВИЧНОЙ ОБМОТКИ:
3 ВИТКА ДЛЯ ПЛОХИХ УСЛОВИЙ ОХЛАЖДЕНИЯ И 5 ВИТКОВ ЕСЛИ ВЕНТИЛЯТОР ОБДУВАЕТ НЕПОСРЕДСТВЕННО ПЛАТУ
КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ:
12...14 ДЛЯ ПЕРВИЧНОЙ ИЗ 3-Х ВИТКОВ И 20...22 ДЛЯ ПЕРВИЧНОЙ ИЗ 5-ТИ ВИТКОВ

ГОРАЗДО УДОБНЕЙ ТРАНСФОРМАТОР НАМОТАТЬ СЕКЦИОННО - ПЕРВИЧНАЯ ОБМОТКА НЕ ПЕРЕХЛЕСТЫВАЕТСЯ СО ВТОРИЧНОЙ. В ЭТОМ СЛУЧАЕ ОТМОТАТЬ-ДОМОТАТЬ ВИТОК К ПЕРВИЧНОЙ ОБМОТКЕ НЕ ПРЕДСТАВЛЯЕТ ТРУДА. В ФИНАЛЕ ПРИ НАГРУЗКЕ В 60% ОТ МАКСИМАЛЬНОЙ НА ВЕРХНЕМ ВЫВОДЕ R27 ДОЛЖНО БЫТЬ ПОРЯДКА 12...15 В
Первичная обмотка трансформатора мотается тем же, что и первичная обмотка силового трансформатора TV2, вторичная двойным проводом диаметром 0,15...0,3 мм.

Для изготовления силового трансформатора импульсного блока птания следует воспользоваться программой для расчета импульсных трансформаторов . Конструктив сердечника принципиального значения не имеет - может быть и тороидальным и Ш-образным. Печатные платы позволяют без проблемно использовать и тот и другой. Если габаритной мощности Ш-образного средечника не хватает его можно так же сложить в пакет, как кольца (рисунок 12).


Рисунок 12

Ш-образными ферритами можно разжиться в телемастерских - не чато, но трансформаторы питания в телевизорах выходят из строя. Легче всего найти блоки питания от отечественных телевизоров 3...5-го. Не стоит забывать, что в случае, если требуется трансформатор из двух-трех средечников, то ВСЕ средечники должны быть одной марки, т.е. для разборки необходимо использовать трансформаторы одного типа.
Если силовой трансформатор будет изготовлен из колец 2000, то можно воспользоваться таблицей 4.

РЕАЛИЗАЦИЯ

РЕАЛЬНЫЙ
ТИПОРАЗМЕР

ПАРАМЕТР

ЧАСТОТА ПРЕОБРАЗОРВАНИЯ

МОЖНО БОЛЬШЕ

ОПТИМАЛЬНО

СИЛЬНЫЙ НАГРЕВ

1 КОЛЬЦО
К40х25х11

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

2 КОЛЬЦА
К40х25х11

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

1 КОЛЬЦО
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

2 КОЛЬЦА
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

3 КОЛЬЦА
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ




ВИТКОВ НА ПЕРВ ОБМОТКУ


4 КОЛЬЦ А
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ






ВИТКОВ НА ПЕРВ ОБМОТКУ




КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ РАСЧИТЫВАЕТСЯ ЧЕРЕЗ ПРОПОРЦИЮ, УЧИТЫВАЯ ТО, ЧТО НАПРЯЖЕНИЕ НА ПЕРВИЧНОЙ ОБМОТКЕ РАВНО 155 В ИЛИ ПРИ ПОМОЩИ ТАБЛИЦЫ (ИЗМЕНЯТЬ ТОЛЬКО ЖЕЛТЫЕ ЯЧЕЙКИ )

Обратите внимание, что стабилизация напряжения осуществляется при помощи ШИМ, следовательно выходное расчетное напряжение вторичных обмоток должно быть минимум на 30 % больше, чем вам необходимо. Оптимальные параметры получаются, когда расчетной напряжение составляет на 50...60% больше, чем необходимо стабилизировать. Например Вам необходим источник с выходным напряжением 50 В, следовательно вторичная обмотка силового трансформатора должна расчитываться на выходное напряжение 75...80 В. В таблице расчетов вторичной обмотки этот коэфициент учтен.
Зависимость частоты преобразования от номиналов С5 и R5 показана на графике:

Использовать довольно большое сопротивление R5 не рекомендуется - слишком большое магнитное поле находится совсем не далеко и возможны наводки. Поэтому остановимся на "среднем" номинале R5 в 10 кОм. При таком сопротивлении частотозадающего резистора получаются следующие частоты преобразования:

Параметры получены у данного производителя

Частота преобразования

(!) Тут следует сказать несколько слов о намотке трансформатора. Довольно часто приходят возмущения, мол при самостоятельном изготовлении источник либо не отдает необходиму мощность, либо силовые транзисторы сильно греются даже без нагрузки.
Откровенно говоря с такой проблемой мы тоже сталкнулись используя кольца 2000, но нам было проще - наличие измерительной аппартуры позволило выяснить в чем причина таких казусов, а она оказалась довольно ожидаемой - магнитная проницаемость феррита не соответсвует маркировки. Другими словами на "слабеньких" трансформаторах пришлось отматывать первичную обмотку, на "греющихся силовых транзисторах" наоборот - доматывать.
Немного позже мы отказалиьс от использования колец, однако тот феррит который мы используем вообще был не макрирован, поэтому пошли на радикальные меры. К собранной и отлаженной плате подключается трансформатор с расчетным количеством витков первичной обмотки и изменяется частота преобразования установленным на плату подстроечным резистором (вместо R5 устанавливается подстроечник на 22 кОм). В момент включения частоат преобразования устанавливается в пределах 110 кГц и начинает снижаться вращением движка подстроечного резистора. Таким образом выясняется частота при которой сердечник начинает входить в насыщение, т.е. когда силовые транзисторы начинают греться без нагрузки. Если частота снижается ниже 60 кГц, то первичная обмотка отматывается, если же температура начинает повышаться на 80 кГц, то первичная обмотка доматывается. Таким образом выясняется количество витков именно для этого сердечника и тоько после этого наматывается вторичная обмотка с использованием предлагаемой выше таблички и на упаковках проставляется количество витков первички для того или иного средечника..
Если качество вашего сердечника вызывает сомнения, то лучше изготовить плату, проверить ее на работоспособность и только после этого изготавливать силовой трансформатор используя описанную выше методику..

Дроссель групповой стабилизации. Кое где даже мелькало суждение, что он ну никак не может работать, поскольку через него протекает постоянное напряжение. С одной стороны подобные суждения верны - напряжение действительно одной полярности, значит может быть опознанно как постоянное. Однако автор подобного суждения не учел тот факт, что напряжение хоть и постонное, но оно пульсирующее и во время работы в данном узле происходит далеко не один процесс (протекание тока), а множество, поскольку дроссель содержит не одну обмотку, а минимум две (если выходное напряжение нужно двуполярное) или 4 обмотки, если необходимо два двуполярных напряжения (рисунок 13).



Рисунок 13

Изготовить дроссель можно и на кольце и на Ш-образхном феррите. Габариты конечно же зависят от мощности. Для мощностей до 400-500 Вт хватает средечника от сетевого фильтра питания телевизоров с 54-х см диагональю и выше (рисунок 14). Конструктив сердечника не принципиален

Рисунок 14

Мотается так же как и силовой трансформатор - из нескольких тонких проводников, свитых в жгут или склеенных в ленту из расчета 4-5 А/мм кв. Теоритически - чем больше витков - тем лучше, поэтому обмотка укладывается до заполнения окна, причем сразу в 2 (если нужен двуполярный источник) или в 4 провода (если нужен источник с двумя двуполярными напряжениями.
После сглаживающих конденсаторов стоят выходные дроссели. Особых требований к ним не предъявляется, габариты... Платы расчитаны на установку сердечников от фильтров сетевого питания телевизоров. Наматывают до заполнения окна, сечение из расчета 4-5 А/мм кв (рисунок 15).



Рисунок 15

Выше упоминалась лента в качетсве обмотки. Здесь следует остановится несколько подробней.
Что лучше? Жгут или лента? И у того и у другого способа есть свои преимущества и недостатки. Изготовление жгута наиболее простой способ - растянул необходимое количество проводов, а затем скрутил их в жгут при помощи дрели. Однако такой способ увеличивает суммарную длину проводников за счет внутреннего кручения, а так же не позволяет добиться идентичности магнитного поля во все проводниках жгута, а это, пусть и не большие, но все же потери на тепло.
Изготовление ленты более трудоемко и немного дороже обходится, поскольку необходимое количество проводников растягивается и затем, при помощи полиуританового клея (ТОП-ТОП, СПЕЦИАЛИСТ, МОМЕНТ-КРИСТАЛЛ) склеивается в ленту. Клей наносят на провод небольшими порциями - по 15…20 см длинны проводника и затем зажав жгут между пальцами как бы втирают его следя за тем, чтобы провода уложились в ленту, на подобии ленточных жгутов, используемых для соединения дисковых носителей с материнской платой IBM компьютеров. После того как клей прихватился наносится новая порция на 15…20 см длины проводов и снова разглаживается пальцами до получения ленты. И так по всей длине проводника (рисунок 16).


Рисунок 16

После полного высыхания клея производят намотку ленты на сердечник, причем первой наматывается обмотка с большим количеством витков (как правило и меньшим сечением), а сверху уже более сильноточные обмотки. После намотки первого слоя необходимо ленту "уложить" внутри кольца воспользовавшись выструганным из дерева конусообразным колышком. Максимальный диаметр колышка равен внутреннему диаметру используемого кольца, а минимальный - 8…10 мм. Длина конуса должна быть не меньше 20 см и измение диаметра должно быть равномерным. После намотки первого слоя кольцо просто одевают на колышек и с усилием надавливают таким образом, чтобы кольцо довольно сильно заклинило на колышке. Затем кольцо снимают, переворачивают и снова одевают на колышек с тем же усилием. Колышек должен быть достаточно мягким, чтоб не повредить изоляцию обмоточного провода, поэтому твердые породы дерева для этих целей не подойдут. Таким образом проводники укладывают строго по форме внутреннего диаметра сердечника. После намотки следующего слоя провод снова "укладывают" при помощи колышка и так делают после намотки каждого следующего слоя.
После намотки всех обмоток (не забывая использовать межобмоточную изоляцию) трансформатор желательно прогреть до 80…90°С в течении 30-40 мин (можно воспользоваться духовкой газовой или электрической печки на кухне, но не следует перегревать). При этой температуре полиуритановый клей делается эластичным и снова приобретает клеящие свойства склеивая между собой уже не только проводники расположенные параллельно самой ленте, но и находящиеся сверху, т.е. происходит склеивание слоев обмоток между собой, что добавляет механической жесткости обмоткам и исключает какие либо звуковые эффекты, появление которых иногда случается при плохой стяжке проводников силового трансформатора (рисунок 17).


Рисунок 17

Плюсами такой намотки является получения идентичного магнитного поля во все проводах ленточного жгута, поскольку геометрически они располагаются одинаково по отношению к магнитному полю. Такой ленточный проводник гораздо легче равномерно распределять по всему периметру сердечника, что очень актуально даже для типовых трансформаторов, а для импульсных является ОБЯЗАТЕЛЬНЫМ условием. Используя ленту можно добиться довольно плотной намотки, причем увеличив доступ охлаждающего воздуха к виткам, расположенным непосредственно внутри обмотки. Для этого достаточно количество необходимых проводов разделить на два и сделать две одинаковых ленты, которые будут наматываться друг на друга. Таким образом увеличится толщина намотки, но появится большое расстояние между витками ленты, обеспечивая доступ воздуха внутрь трансформатора.
В качестве межслойной изоляции лучше всего использовать фторопластовую пленку - очень эластична, что компенсирует напряженность одного края, возникающего при намотке на кольцо, имеет довольно большое пробивное напряжение, не чувствительна к температурам до 200°С и очень тонкая, т.е. не будет занимать много места в окне сердечника. Но она не всегда имеется под рукой. Использовать виниловую изоленту можно, но она чувствительна к температурам выше 80°С. Изолента на основе материи к температурам устойчива, но имеет маленькое пробивное напряжение, поэтому при ее использовании необходимо наматывать минимум 2 слоя.
Каким бы проводником и в какой бы последовательности Вы не наматывали дроссели и силовой трансформатор следует помнить о длине выводов
Если Дроссели и силовой трансформатор изготавливаются с использованием ферритовых колец, то не надо забывать, что перед намоткой края ферритового кольца следует скруглить, поскольку они достаточно остры, а феррит материал довольно прочный и может повредить изоляцию на обмоточном проводе. После обработки феррит обматывается фторопластовой лентой или матерчатой изолентой и наматывается первая обмотка.
Для полной идентичности одинаковых обмоток обмотки мотаются сразу в два провода (подразумевается сразу в два жгута) которые после намотки прозваниваются и начало одной обмотки соединяется с концом другой.
После намотки трансформатора необходимо удалить лаковую изоляцию на проводах. Это самый не приятный момент, поскольку ОЧЕНЬ трудоемкий.
Прежде всего необходимо зафиксировать вывода на самом трансформаторе и исключить вытягивание отдельных проводов их жгута при механических воздействиях. Если жгут ленточный, т.е. клееный и после намотки прогретый, то достаточно намотать на отводы несколько витков тем же обмоточным проводом непосредственно возле тела трансформатора. Если же используется витой жгут, то его необходимо дополнительно свить у снования вывода и так же зафиксировать, намотав несколько витков провода. Далее вывода либо обжигаются при помощи газовой горелки сразу все, либо зачищаются по одному при помощи канцелярского резака. Если лак отжигался, то после остывания провода защищаются наждачной бумагой и свиваются.
После удаления лака, зачистки и свивки вывода необходимо защитить от окисления, т.е. покрыть канифольным флюсом. Затем трансформатор устанавливают на плату, все вывода, кроме вывода первичной обмотки подключаемого к силовым транзисторам, вставляются в соответствующие отверстия, на всякий случай следует "прозвонить" обмотки. Особое внимание следует обратить на фазировку обмоток, т.е. на соответствие начала обмотки с принципиальной схемой. После того как вывода трансформатора вставлены в отверстия следует их укоротить так, чтобы от конца вывода до печатной платы было 3…4 мм. Затем свитый вывод "раскручивается" и в место пайки помещается АКТИВНЫЙ флюс, т.е. это либо гашенная соляная кислота, на кончик спички берется капелька и переносится в место пайки. Либо в глицерин добавляется ацетил-салициловая кислота кристаллическая (аспирин) до получения кашеобразной консистенции (и то и другое можно приобрести в аптеке, в рецептурном отделе). После этого вывод припаивается к печатной плате, тщательно прогревая и добиваясь равномерного расположения припоя вокруг ВСЕХ проводников отвода. Затем вывод укорачивается по высоте пайки и плата тщательно моется либо спиртом (90% минимум), либо очищенным бензином, либо смесью бензина с растворителем 647 (1:1).

ПЕРВОЕ ВКЛЮЧЕНИЕ
Включение, проверка работоспособности производится в несколько этапов позволяющих избежать неприятностей, которые однозначно возникнут при ошибке в монтаже.
1 . Для проверки данной конструкции потребуется отдельный источник питания с двуполярных напряжением ±15...20 В и мощность 15...20 Вт. Первое включение производят подключив МИНУСОВОЙ ВЫВОД дополнительного источника питания к минусовой первичной шине питания преобразователя, а ОБЩИЙ подключают в плюсовому выводу конденсатора С1 (рисунок 18). Таким образом симмулируется питани модуля управления и он проверяется на работоспосбность без силовой части. Тут желательно использовать осцилограф и частотомер, но если их нет, то можно обойтись и мультиметром, желательно стрелочны (цифровые не адекватно реагируют на пульсирующие напряжения).


Рисунок 18

На выводах 9 и 10 контроллера TL494 стрелочный прибор, включенный на измерение постоянного напряжения должен показать почти половину напряжения питания, что говорит о том, что на микросхеме имеются прямоугольные импульсы
Так же должно сработать реле К1
2 . Если модуль работает нормально, то следует проверить силовую часть, но опять же не от высокого напряжения, а используя доп источник питания (рисунок 19).


Рисунок 19

При такой последовательности проверки что либо сжечь весьма затруднительно даже при серьезных ошибках монтажа (замыкание между дорожками платы, не пропайка элементов) поскольку мощности дополнительного блока не хватит. После включения проверяется наличие выходных напряжения преобразователя - конечно же оно будет значительно ниже расчетного (при использовании доп источника ±15В выходные напряжения будут занижены примерно в 10 раз, поскольку первичное питание составляет не 310 В а 30 В), тем не менее наличие выходных напряжений говорит о том, что в силовой части нет ошибок и можно переходить к терьей части проврки.
3 . Первое включение от сети необходимо производить с токоограничением в качестве которого может выступить обычная лампа накаливания на 40-60 Вт, которую подключают вместо предохранителя. Радиаторы уже должны быть установлены. Таким образом в случае чрезмерного потребления по какой либо причине лампа загорится, а вероятность выхода из строя сведется к минимуму. Если же все нормально, то производят регулировку выходного напряжения резисторовм R26 и проверяют нагрузочную способность источника подключив к выходу такую же лампу накаливания. Включенная вместо предохранителя лампа должна загоряется (яркость зависит от выходного напряжения, т.е. от того какую мощность источник будет отдавать. Выходное напряжение регулируется резистором R26, однако может потебоваться подбор R36.
4 . Проверка работоспособности производится с установленным на место предохранителем. В качестве нагрузки можно использовать нихромовую спираль для электропечек мощность 2-3 кВт. Два отрезка провода подпаивают к выходу источника питания, для начала к плечу, с котрого производится контроль выходного напряжения. Один провод прикручивается к концу спирали, на второй устанавливается "крокодил". Теперь, переустанавливая "крокодил" по длине спирали, можно оперативно менять сопротивление нагрузки (рисунок 20).


Рисунок 20

Будет не лишним на спирали сделать "растяжки" в местах с определенным сопротивлением, например каждые 5 Ом. Подключаясь к "растяжкам" Уже заранее будет известно какая нагрузка и какая выходная мощность на данный момент. Ну а мощность можно вычислить по закону Ома (используется в табличке).
Все это необходимо для регулировки порога срабатывания защиты от перегрузки, которая должна устойчиво срабатывать при превышении реальной мощности на 10-15% расчетную. Так же проверяется как устойчиво источник питания держит нагрузку.

Если источник питания не отдает расчетную мощность значит какая то ошибка закралась при изготовлении трансформатора - смотрим выше как расчитать витки под реальный сердечник.
Осталось внимательно изучить как изготовить печатную плату, а это И можно приступать к сборке. Необходимые чертежи печатной платы с первоисточником в формате LAY лежат в

Первая
цифра

Вторая
цифра

Третья
цифра

Множе-
тель

Допуск
+/- %

Серебристый

-

-

-

10^-2

10

Золотистый

-

-

-

10^-1

5

Черный

-

0

-

1

-

Коричневый

1

1

1

10

1

Красный

2

2

2

10^2

2

Оранжевый

3

3

3

10^3

-

Желтый

4

4

4

10^4

-

Зеленый

5

5

5

10^5

0,5

Голубой

6

6

6

10^6

0,25

Фиолетовый

7

7

7

10^7

0,1

Серый

8

8

8

10^8

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное , имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой , хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого . Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения U BM .

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной U BM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Однотактная схема . При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно .

Двухтактная схема со средней точкой трансформатора (пушпульная) . Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема . По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема . По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) I КМАХ и максимальному напряжению коллектор-эмиттер U КЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (U КЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Видео о изготовлении простейшего импульсного питающего устройства

Импульсные источники питания (ИИП) обычно являются достаточно сложными устройствами, из-за чего начинающие радиолюбители стремятся их избегать. Тем не менее, благодаря распространению специализированных интегральных ШИМ-контроллеров, есть возможность конструировать достаточно простые для понимания и повторения конструкции, обладающие высокими показателями мощности и КПД. Предлагаемый блок питания имеет пиковую мощность около 100 Вт и построен по топологии flyback (обратноходовой преобразователь), а управляющим элементом является микросхема CR6842S (совместимые по выводам аналоги: SG6842J , LD7552 и OB2269).

Внимание! В некоторых случаях для отладки схемы может понадобится осциллограф!

Технические характеристики

Размеры блока: 107х57х30 мм (размеры готового блока с Алиэкспресс, возможны отклонения) .
Выходное напряжение: версии на 24 В (3-4 А) и на 12 В (6-8 А).
Мощность: 100 Вт.
Уровень пульсаций: не более 200 мВ.

На Али легко найти множество вариантов готовых блоков по этой схеме, например, по запросам вида "Artillery power supply 24V 3A" , "Блок питания XK-2412-24" , "Eyewink 24V switching power supply" и тому подобным. На радиолюбительских порталах данную модель уже окрестили "народной", ввиду простоты и надёжности. Схемотехнически варианты 12В и 24В различаются незначительно и имеют идентичную топологию.

Пример готового блока питания с Али:


Обратите внимание! В данной модели БП у китайцев весьма высок процент брака, поэтому при покупке готового изделия перед включением желательно тщательно проверять целостность и полярность всех элементов. В моём случае, например, диод VD2 имел неверную полряность, из-за чего уже после трёх включений блок сгорел и мне пришлось менять контроллер и ключевой транзистор.

Подробно методология проектирования ИИП вообще, и конкретно этой топологии в частности, тут рассматриваться не будет, ввиду слишком большого объёма информации - см. отдельные статьи.


Импульсный блок питания мощностью 100Вт на контроллере CR6842S.

Назначение элементов входной цепи

Рассматривать схему блока будем слева-направо:
F 1 Обычный плавкий предохранитель.
5D-9 Терморезистор, ограничивает бросок тока при включении блока питания в сеть. При комнатной температуре имеет небольшое сопротивление, ограничивающее броски тока, при протекании тока разогревается, что вызывает снижение сопротивления, поэтому в дальнейшем не влияет на работу устройства.
C 1 Входной конденсатор, для подавления несимметричной помехи. Ёмкость допустимо немного увеличить, желательно чтобы он был помехоподавляющим конденсатором типа X2 или имел большой (10-20 раз) запас по рабочему напряжению. Для надёжного подавления помех должен иметь низкие ESR И ESL.
L 1 Синфазный фильтр, для подавления симметричной помехи. Состоит из двух катушек индуктивности с одинаковым числом витков, намотанных на общем сердечнике и включенных синфазно.
KBP307 Выпрямительный диодный мост.
R 5 , R 9 Цепочка, необходимая для запуска CR6842. Через неё осуществляется первичный заряд конденсатора C 4 до 16.5В. Цепь должна обеспечивать ток запуска не менее 30 мкА (максимум, согласно даташиту) во всём диапазоне входных напряжений. Также, в процессе работы посредством этой цепочки осуществляется контроль входного напряжения и компенсация напряжения при котором закрывается ключ - увеличение тока, втекающего в третий пин, вызывает понижение порогового напряжения закрытия ключа.
R 10 Времязадающий резистор для ШИМ. Увеличение номинала данного резистора уменьшит частоту переключения. Номинал должен лежать в пределах 16-36 кОм.
C 2 Сглаживающий конденсатор.
R 3 , C 7 , VD 2 Снабберная цепь, защищающая ключевой транзистор от обратных выбросов с первичной обмотки трансформатора. R 3 желательно использовать мощностью не менее 1Вт.
C 3 Конденсатор, шунтирующий межобмоточную ёмкость. В идеале должен быть Y-типа, либо же должен иметь большой запас (15-20 раз) по рабочему напряжению. Служит для уменьшения помех. Номинал зависит от параметров трансформатора, делать слишком большим нежелательно.
R 6 , VD 1 , C 4 Данная цепь, запитываясь от вспомогательной обмотки трансформатора образует цепь питания контроллера. Также данная цепь влияет на цикл работы ключа. Работает это следующим образом: для корректной работы напряжение на седьмом выводе контроллера должно находиться в пределах 12.5 - 16.5 В. Напряжение 16.5В на этом выводе является порогом, при котором происходит открытие ключевого транзистора и энергия начинает запасаться в сердечнике трансформатора (в это время микросхема питается от C 4). При понижении ниже 12.5В микросхема отключается, таким образом конденсатор C 4 должен обеспечивать питание контроллера пока из вспомогательной обмотки не поступает энергии, поэтому его номинала должно быть достаточно чтобы удерживать напряжение выше 12.5В пока ключ открыт. Нижний предел номинала C 4 следует рассчитывать исходя из потребления контроллера около 5 мА. От времени заряда данного конденсатора до 16.5В зависит время закрытого ключа и определяется оно током, который может отдать вспомогательная обмотка, при этом ток ограничивается резистором R 6 . Кроме всего прочего, посредством данной цепи в контроллере предусмотрена защита от перенапряжения в случае выхода из строя цепей обратной связи - при превышении напряжения выше 25В контроллер отключится и не начнёт работать пока питание с седьмого пина не будет снято.
R 13 Ограничивает ток заряда затвора ключевого транзистора, а также обеспечивает его плавное открытие.
VD 3 Защита затвора транзистора.
R 8 Подтяжка затвора к земле, выполняет несколько функций. Например, в случае отключения контроллера и повреждения внутренней подтяжки данный резистор обеспечит быстрый разряд затвора транзистора. Также, при корректной разводке платы обеспечит более короткий путь тока разряда затвора на землю, что должно положительно сказаться на помехозащищённости.
BT 1 Ключевой транзистор. Устанавливается на радиатор через изолирующую прокладку.
R 7 , C 6 Цепь служит для сглаживания колебаний напряжения на токоизмерительном резисторе.
R 1 Токоизмерительный резистор. Когда напряжение на нём превышает 0.8В контроллер закрывает ключевой транзистор, таким образом регулируется время открытого ключа. Кроме того, как уже говорилось выше, напряжение при котором будет закрыт транзистор также зависит от входного напряжения.
C 8 Фильтрующий конденсатор оптопары обратной связи. Допустимо немного увеличить номинал.
PC817 Опторазвязка цепи обратной связи. Если транзистор оптопары закроется это вызовет повышение напряжения на втором выводе контроллера. Если напряжение на втором выводе будет превышать 5.2В дольше 56 мс, это вызовет закрытие ключевого транзистора. Таким образом реализована защита от перегрузки и короткого замыкания.

В данной схеме 5-й вывод контроллера не используется. Однако, согласно даташиту на контроллер, на него можно повесить NTC-термистор, который обеспечит отключение контроллера в случае перегрева. Стабилизированный выходной ток данного вывода - 70 мкА. Напряжение срабатывания температурной защиты 1.05В (защита включится при достижении сопротивления 15 кОм). Рекомендуемый номинал термистора 26 кОм (при 27°C).

Параметры импульсного трансформатора

Поскольку импульсный трансформатор это один из самых сложных в проектировании элементов импульсного блока, расчёт трансформатора для каждой конкретной топологии блока требует отдельной статьи, поэтому подробного описания методологии тут не будет, тем не менее для повторения описываемой конструкции следует указать основные параметры используемого трансформатора.

Следует помнить, что одно из важнейших правил при проектировании - соответствие габаритной мощности трансформатора и выходной мощности блока питания, поэтому первым делом, в любом случае, выбирайте подходящие вашей задаче сердечники.

Чаще всего данная конструкция поставляется с трансформаторами, выполненными на сердечниках типа EE25 или EE16, либо аналогичных. Собрать достаточно информации по количеству витков в данной модели ИИП не удалось, поскольку в разных модификациях, несмотря на схожие схемы, используются различные сердечники.

Увеличение разницы в количестве витков ведёт к уменьшению потерь на переключение ключевого транзистора, но повышает требования к его нагрузочной способности по максимальному напряжению сток-исток (VDS).

Для примера, будем ориентироваться на стандартные сердечники типа EE25 и значение максимальной индукции Bmax = 300 мТ. В этом случае соотношение витков первой-второй-третьей обмотки будет равно 90:15:12.

Следует помнить, что указанное соотношение витков не является оптимальным и возможно потребуется корректировка соотношений по результатам испытаний.

Первичную обмотку следует наматывать проводником не тоньше 0.3мм в диаметре. Вторичную обмотку желательно выполнять сдвоенным проводом диаметром 1мм. Через вспомогательную третью обмотку течёт малый ток, поэтому провода диаметром 0.2мм будет вполне достаточно.

Описание элементов выходной цепи

Далее кратко рассмотрим выходную цепь источника питания. Она, в общем-то, совершенно стандартна, от сотен других отличается минимально. Интересна может быть лишь цепочка обратной связи на TL431, но её мы тут подробно рассматривать не будем, потому что про цепи обратной связи есть отдельная статья.
VD 4 Сдвоенный выпрямительный диод. В идеале подбирать с запасом по напряжению\току и с минимальным падением. Устанавливается на радиатор через изолирующую прокладку.
R 2 , C 12 Снабберная цепь для облегчения режима работы диода. R 2 желательно использовать мощностью не менее 1Вт.
C 13 , L 2 , C 14 Выходной фильтр.
C 20 Керамический конденсатор, шунтирующий выходной конденсатор C 14 по ВЧ.
R 17 Нагрузочный резистор, обеспечивающий нагрузку для холостого хода. Также через него разряжаются выходные конденсаторы в случае запуска и последующего отключения без нагрузки.
R 16 Токоограничивающий резистор для светодиода.
C 9 , R 20 , R 18 , R 19 , TLE431, PC817 Цепь обратной связи на прецизионном источнике питания. Резисторы задают режим работы TLE431, а PC817 обеспечивает гальваническую развязку.

Что можно улучшить

Вышеописанная схема обычно поставляется в готовом виде, но, если собирать схему самому, ничто не мешает немного улучшить конструкцию. Модифицировать можно как входные, так и выходные цепи.

Если в ваших розетках земляной провод имеет соединение с качественной землёй (а не просто ни к чему не подключен, как это часто бывает), можно добавить два дополнительных Y-конденсатора, соединённых каждый со своим сетевым проводом и землёй, между L 1 и входным конденсатором C 1 . Это обеспечит симметрирование потенциалов сетевых проводов относительно корпуса и лучшее подавление синфазной составляющей помехи. Вместе с входным конденсатором два дополнительных конденсатора образуют т.н. «защитный треугольник».

После L 1 также стоит добавить ещё один конденсатор X-типа, с той же ёмкостью что у C 1 .

Для защиты от импульсных бросков напряжения большой амплитуды целесообразно параллельно входу подключать варистор (например 14D471K). Также, если у вас есть земля, для защиты в случае аварии на линии электроснабжения, при которой вместо фазы и нуля фаза попадаётся на оба провода, желательно составить защитный треугольник из таких же варисторов.



При повышении напряжения выше рабочего, варистор снижает своё сопротивление и ток течёт через него. Однако, ввиду относительно низкого быстродействия варисторов, они не способны шунтировать скачки напряжения с быстро нарастающим фронтом, поэтому для дополнительной фильтрации быстрых скачков напряжения желательно параллельно входу подключать также двунаправленный TVS-супрессор (например, 1.5KE400CA).

Опять же, при наличии земляного провода, желательно добавить на выход блока ещё два Y-конденсатора небольшой ёмкости, включенных по схеме «защитного треугольника» параллельно с C 14 .

Для быстрой разрядки конденсаторов при отключении устройства параллельно входным цепям целесообразно добавить мегаомный резистор.

Каждый электролитический конденсатор желательно зашунтировать по ВЧ керамикой малой ёмкости, расположенной максимально близко к выводам конденсатора.

Ограничительный TVS-диод будет не лишним поставить также и на выход - для защиты нагрузки от возможных перенапряжений в случае проблем с блоком. Для 24В версии подойдёт, например 1.5KE24A.

Заключение

Схема достаточно проста для повторения и стабильна. Если добавить все, описанные в разделе "Что можно улучшить", компоненты, получится весьма надёжный и малошумящий блок питания.

Импульсный блок питания - это инверторная система, в которой переменное напряжение преобразовывается в постоянное, а затем из него формируются импульсы повышенной частоты. Такой прибор стоит довольно дорого и купить его могут только обеспеченные люди. Все те, кто не относится к этой категории, стараются изготовить устройство своими руками. Для этого понадобятся необходимые материалы и схема импульсного блока питания 12 В 5А.

Общие сведения

Перед тем как сделать импульсный блок питания своими руками, необходимо подробно изучить его конструктивные особенности, принцип действия, достоинства и недостатки. С помощью этой информации можно ускорить процесс создания, а также сделать устройство более качественным и долговечным.

Составные части

Чаще всего самодельный импульсный блок питания изготавливается по стандартной схеме с использованием некоторых важных элементов. Он применяется для корректировки входного напряжения при питании светодиодных ламп или других осветительных приборов. Конструкция блока включает в себя несколько составляющих:

Принцип работы

Импульсный источник питания отличается простотой своей работы. В ней без труда сможет разобраться не только специалист, но и новичок, имеющий элементарные знания в этой области. Из-за этого устройства считаются наиболее доступными и часто используются для достижения различных целей. Работают они следующим образом:

  1. Переменное входное напряжение преобразовывается в постоянное.
  2. Затем оно принимает вид прямоугольного импульса высокой частоты и подаётся на трансформатор.
  3. Там при помощи отрицательной обратной связи происходит процесс стабилизации напряжения.

Обратная связь может быть создана одним из двух способов. Оба они позволяют качественно выполнить возложенные функции и избежать появления непредвиденных ситуаций. Способы организации обратной связи:

  1. Без создания развязки (применяется резисторный делитель напряжения).
  2. С гальванической развязкой (выход обмотки трансформатора или оптрон).

Аналогично происходит процесс выдерживания выходного напряжения.

Преимущества и недостатки

Созданный своими руками импульсный БП, как и любое другое устройство, имеет несколько достоинств. Благодаря им конструкция пользуется большой популярностью и часто применяется в той или иной сфере деятельности человека. К положительным сторонам источника питания относятся следующие факторы:

Несмотря на большое количество преимуществ, у конструкции есть и несколько недостатков. Их обязательно нужно учитывать, так как они позволят избежать неисправностей и снизят риск некачественной работы устройства. Среди недостатков выделяются такие:

  1. Наличие трудностей при самостоятельной регулировке параметров прибора.
  2. Сильные импульсные помехи.
  3. Необходимость дополнения цепи компенсаторами коэффициента мощности.
  4. Сложность проведения ремонтных и профилактических работ.
  5. Низкая степень надёжности.

Изготовление своими руками

Для того чтобы устройство правильно работало и выполняло возложенные на него функции, необходимо соблюсти ряд правил. С их помощью можно добиться нужного результата и снизить вероятность возникновения ошибок.

Во время изготовления импульсного источника питания следует брать во внимание не только советы производителей деталей, но и рекомендации специалистов. Они помогут новичкам избежать большинства простых ошибок и выполнить работу за максимально короткий промежуток времени. Советы профессионалов:

  1. В большинстве случаев схема блока питания не требует наличия специальных фильтров и организации обратной связи.
  2. Из множества полевых транзисторов рекомендуется покупать детали типа IR. Они хорошо выдерживают повышенные температуры и не разрушаются под длительным воздействием тепла.
  3. Если в собранной своими руками конструкции транзисторы будут сильно нагреваться в процессе работы, то следует установить дополнительное охлаждающее устройство (вентилятор).

Необходимые материалы и инструменты

Перед тем как приступить к изготовлению устройства, нужно подготовить все необходимые материалы и инструменты. Благодаря этому можно будет не отвлекаться во время работы, чтобы найти тот или иной предмет. В процессе создания прибора понадобятся:

Помимо составляющих частей конструкции необходимо подготовить различные инструменты. С их помощью будет выполняться сборка устройства, поэтому они должны быть качественными и удобными для использования.

Необходимые инструменты:

  • плоскогубцы;
  • отвёртки разного размера;
  • пинцет;
  • паяльное оборудование;
  • расходные материалы для пайки.

Процесс сборки

После того как все подготовительные мероприятия были завершены, можно приступать к сборке устройства своими руками. Схема импульсных источников питания составляется заранее. Эту работу можно выполнять самостоятельно или с помощью специалиста.

Первый вариант значительно дешевле, но требует от мастера наличия знаний в области электроники и больших временных затрат.

Пошаговая инструкция:

Тестирование устройства

Для того чтобы проверить собранный импульсный источник энергии на работоспособность, необходимо выполнить несколько простых действий. Они помогут выявить различные проблемы и ошибки, допущенные в процессе сборки. Порядок действий:

  1. Выполняется первое кратковременное включение устройства в цепь.
  2. Если всё правильно сделано, то должна загореться лампочка, сигнализирующая о подаче питания к прибору.
  3. Затем следует оставить блок питания в рабочем состоянии на несколько минут.
  4. По истечении этого времени необходимо отключить устройство и проверить температуру всех его деталей. Нагрев одного или нескольких элементов будет свидетельствовать о допущенной ошибке в процессе сборки.
  5. При втором пуске определяется величина напряжения. Выполнить эту операцию можно при помощи специального тестера.
  6. Работающий блок питания оставляется примерно на 1 час.
  7. По прошествии указанного промежутка времени элементы проверяются на степень нагрева.
  8. Если ни один из элементов не стал горячим, то все они проверяются на наличие высокого тока после отключения питания.

Техника безопасности

Во время эксплуатации импульсного блока необходимо придерживаться простых правил безопасности. Они помогут избежать травм разной степени тяжести и снизить вероятность возникновения аварийной ситуации. Основные меры предосторожности:

Импульсный источник энергии - это полезное и нужное устройство, которое можно не только купить в готовом виде, но и изготовить своими руками. Второй вариант более популярный, так как он позволяет получить качественный прибор с минимальными финансовыми и временными затратами.

При соблюдении советов профессионалов и правил техники безопасности можно значительно снизить риск получения травмы и избежать аварийных ситуаций.

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.
Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. Можно изготовить и более мощные электронные трансформаторы, например на IR2153, а можно КУПИТЬ ГОТОВЫЙ и переделать под свои напряжения.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП), причем довольно компактный. Единственное, чем схема электронного балласта отличается от настоящего импульсного блока питания, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных энергосберегающих ламп, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы балласта энергосберегающей лампы от импульсного блока питания

Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.


Схема энергосберегающей лампы

А это уже законченная схема импульсного блока питания, собранная на основе балласта люминисцентной лампы с использованием дополнительного импульсного трансформатора.

Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.


Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

Мощность импульсного блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.


БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.


БП с дополнительным импульсным трансформатором

Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

Чтобы снизить уровень пульсаций напряжения на выходе блока питания, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт


Блок питания мощностью 20 Ватт

Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60°C, а транзисторов – 42°C. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.


На картинке действующая модель БП

Мощность, подводимая к нагрузке – 20 Ватт.
Частота автоколебаний без нагрузки – 26 кГц.
Частота автоколебаний при максимальной нагрузке – 32 кГц
Температура трансформатора – 60?С
Температура транзисторов – 42?С

Блок питания мощностью 100 Ватт

Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.


Блок питания мощностью 100 Ватт

Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз большие предельно-допустимые токи. Купить отдельно MJE13007 можно .

Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!


Действующий стоваттный импульсный блок питания

Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.
Мощность, выделяемая на нагрузке – 100 Ватт.
Частота автоколебаний при максимальной нагрузке – 90 кГц.
Частота автоколебаний без нагрузки – 28,5 кГц.
Температура транзисторов – 75?C.
Площадь радиаторов каждого транзистора – 27см?.
Температура дросселя TV1 – 45?C.
TV2 – 2000НМ (O28 х O16 х 9мм)

Выпрямитель

Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

Существуют две широко распространённые схемы двухполупериодных выпрямителей.

1. Мостовая схема.
2. Схема с нулевой точкой.

Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

Пример.
Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

100 / 5 * 0,4 = 8(Ватт)

Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

100 / 5 * 0,8 * 2 = 32(Ватт).

Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

Будьте осторожны, берегитесь ожога!
Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!
То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

Если сильно греются транзисторы, то нужно установить их на радиаторы.

Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65?С, то нужно уменьшить мощность нагрузки.

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП маломощный импульсный блок питания из подручных материалов своими руками

Каково назначение элементов схемы импульсного блока питания?


Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

По материалам сайта http://www.ruqrz.com/

Для большей наглядности приведено несколько принципиальных схем ламп популярных производителей: