Гипотеза сплошной среды. Гипотеза сплошности газовой среды. Режимы движения жидких сред

Передачу энергии в гидравлических системах обеспечивают рабочие жидкости, поэтому чтобы эффективно их применять, надо знать какими свойствами они обладают.

Жидкости, как и все вещества, имеют молекулярное строение. Они занимают промежуточное положение между газами и твердыми телами. Это определяется величинами межмолекулярных сил и характером движений составляющих их молекул. Вгазах расстояния между молекулами больше, а силы межмолекулярного взаимодействия меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.

Молекулы жидкости находятся в непрерывном хаотическом тепловом движении, отличающемся от хаотического теплового движения газов и твердых тел. В жидкостях это движение осуществляется в виде колебаний (10 13 колебаний в секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел состоит в колебаниях относительно стабильных центров. Тепловое движение молекул газа выглядит, как непрерывные скачкообразные перемены мест.

При этом надо заметить, что изменение температуры и давления приводят к изменениям свойств жидкостей. Установлено, что при повышении температуры и уменьшении давления свойства жидкостей приближаются к свойствам газов, а при понижении температуры и увеличении давления – к свойствам твердых тел.

Термин «жидкость» применяется для обозначения и собственно жидкости, которую рассматривают как несжимаемую или мало сжимаемую среду, и газа, который можно рассматривать как «сжимаемую жидкость».

Гипотеза сплошности

Рассматривать и математически описывать жидкость как совокупность огромного количества отдельных частиц, находящихся в постоянном непрогнозируемом движении, на современном уровне науки не представляется возможным. По этой причине жидкость рассматривается как некая сплошная деформируемая среда, имеющая возможность непрерывно заполнять пространство, в котором она заключена. Другими словами, под жидкостями понимают все тела, для которых характерно свойство текучести , основанное на явлении диффузии . Текучестью можно назвать способность тела как угодно сильно менять свой объём под действием сколь угодно малых сил. Таким образом, в гидравлике жидкость понимают как абстрактную среду –континуум , который является основой гипотезы сплошности. Континуум считается непрерывной средой без пустот и промежутков, свойства которой одинаковы во всех направлениях. Это означает, что все характеристики жидкости являются непрерывными функциями и все частные производные по всем переменным также непрерывны.

По-другому такие тела (среды) называют капельными жидкостями. Капельные жидкости - это такие, которые в малых количествах стремятся принять шарообразную форму, а в больших образуют свободную поверхность.

Очень часто в математических описаниях гидравлических закономерностей используются понятия «частица жидкости » или «элементарный объём жидкости ». К ним можно относиться как к бесконечно малому объёму, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см , то в объеме будет находиться 3,3∙10 13 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся или покоящейся жидкостью.

Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости. Правомерность применения такой модели жидкости подтверждена всей практикой гидравлики.

Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонен­тов, которые могут образовывать с жидкостью различные смеси как гомогенные (раство­ры) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основ­ных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.

Идеальная жидкость - модель природной жидкости, характеризующаяся изотропно­стью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемо­стью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процес­сов теплопроводности и теплопереноса.

Реальная жидкость - модель природной жидкости, характеризующаяся изотропно­стью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.

Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.

Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.


Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные дискретные объекты упрощен-ными моделями, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему, т.е. жидкость можно рассматривать как сплошную среду (континуум), лишенную молекул и межмолеку-лярных пространств. Гипотеза сплошности среды означает, что вся-кий малый элемент объема жидкости считается все-таки настолько боль-шим, что содержит еще очень боль-шое число молекул.
Согласно гипотезе сплошности масса среды распределена в объеме непрерывно и в общем неравномер-но.
Реально существующее хаотиче-ское движение молекул отражается в этом случае в величине макроскопи-ческих параметров -  P T W, кото-рые для континуума являются функ-циями точек пространства.
Для газа используют критерий Кнудсена: Kn = l / L, где l – длина свободного пробега молекул, L – ха-ракт. размер течения.
1. Kn 2. Kn > 0,01 то течения разрежен-ных газов. В этой области различают три степени разреженности: (0,01- 0,1) – течения со скольжением; (0,1- 10) – переходная, наименее исследо-ванная область течения разреженных газов; (>10) – свободномолекулярное течение.
Жидкий объем – это мысленно вы-деленный в жидкости малый или ко-нечный объем, состоящий из одной или из одних и тех же частиц, кото-рые при движении может деформи-роваться, но масса жидкости, заклю-ченная в нем не изменяется и не смешивается с окружающей средой.
Контрольный объем – это мыслен-но выделенный постоянный объем, занимающий неизменное положение в пространстве (ч/з к.о. протекает жидкость).
Контрольная поверхность – это по-верхность, ограничивающая кон-трольный объем (для жидкого объе-ма – поверхность жидкого объема)..
Внешняя или окружающая среда – жидкость и все остальное, находя-щееся вне выделенного объема.
Жидкий контур – контур в про-странстве, состоящий из одних и тех же жидких частиц.
Скорость жидкости в данной точке – мгновенная скорость движения центра массы жидкой частицы, про-ходящей в данный момент через дан-ную точку пространства.

  • Основные понятия жидкого кон -тинуума гипотезу сплошности изучаемой среды и заменить реаль-ные дискретные объекты упрощен-ными моделями, представляющими собой материальный континуум, т. е. материальную среду ...


  • Гипотеза сплошности среды . Основные понятия жидкого кон -тинуума . Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные.


  • Гипотеза сплошности среды . Основные понятия жидкого кон -тинуума . Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные.


  • Гипотеза сплошности среды . Основные понятия жидкого кон -тинуума . Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные... подробнее ».


  • Гипотезу сплошности : упрощен-ные модели, представляющими со-бой материальный континуум, т. е. материальную среду , масса которой непрерывно распределена по объе-му, т.е. жидкость можно рассмат-ривать как сплошную среду (кон -тинуум )...


  • Основные понятия , используемые в кинематике жидкости .
    Согласно гипотезе сплошности , рассматриваемый континуум – это жидкая частица, в которой
    Если в предыдущих вопросах, изучая гидростатику, за модель для изучения жидкости в равновесии взяли сплошную среду ...


  • Основные понятия и определения. Действие шума на человека.
    Звуковое давление – разность между мгновенным значением давления в точке среды и статическим давлением в той же точке, т.е. давление в невозмущённой среде .


  • 3) гидравлические струи, которые ограничены жидкой (как мы увидим позже, такие струйки называют затопленными) или газовой средой .
    Чрезвычайно важное значение имеет в гидравлике понятие о гидравлическом радиусе.


  • Основные понятия . Производственная физическая культура – система физкультурно-оздоровительных мероприятий, формы и содержание
    Профессиональное заболевание – это категория болезней, вызываемых влиянием производственной среды или трудового процесса.


  • Уравнение неразрывности жидкости . Довольно часто при решении задач приходится определять неизвестные функции типа
    В качестве пятого уравнения используют уравнение состояния сплошной среды .

Найдено похожих страниц:10


Понятие об аэродинамических трубах и гидролотках

Принцип обратимости движения и моделирования в аэродинамике

Гипотеза сплошности среды

Влажность

Влажностью называется физический параметр, который определяет массовое коли-чество водяных паров находящихся в единице объема воздуха.

Абсолютная влажность – это физический параметр, который определяет массу во-дяных паров, содержащихся в 1 см 3 объема воздуха.

Относительная влажность – это физический параметр, который определяет отно-шение абсолютной влажности к массе водяного пара, которая необходима для насыщения 1 см 3 воздуха при заданной температуре.

ЛЕКЦИЯ 1.4 ГИПОТЕЗА СПЛОШНОСТИ СРЕДЫ.

ПРИНЦИПЫ ОБРАТИМОСТИ ДВИЖЕНИЯ И МОДЕЛИРОВАНИЯ В АЭРОДИНАМИКЕ

Схему, которая заменяет дискретную структуру воздуха сплошной средой, впервые предложил известный ученый Л. Эйлер в 1753 г.

Она получила название гипотезы сплошности среды . Применение ее значительно облегчает исследования законов движения воздуха и газов. Как известно, при нормальных условиях в воздуха помещается молекул.

Критерием оценки сплошности среды является число Кнудсена:

Длинна свободного пробега молекул

L – характерный размер течения (длина обтекаемого тела).

Для характеристики степени разреженности среды в пограничном слое используется

отношение длины свободного пробега молекул к толщинй пограничного слоя

Толщина пограничного слоя зависит от характера течения (числа Маха ) и числа Re. В зависимости от числа Кнудсена(течение газа можно разделить на три основ-ные области:

1 Если 0,01, то средняя длина пробега молекул меньше 1 % от толщины пограничного слоя, в этом случае течение считается сплошным. В этом случае газодинамические параметры воздуха ( являются непрерывными величи-нами, то есть имеет место область обычной газовой динамики.

2 Если 1 , то длинна свободного пробега молекул мала по сравне-нию с размером обтекаемого тела, но соизмерима с толщиной пограничного слоя. В этом случае течение называется течением со скольжением .

3 Если 1 , то длинна свободного пробега больше или соизмеримы по вели-чине с толщиной пограничного слоя. В этом случае имеется область свободно молекулярных течений . В этой области элементарные частицы не взаимодейст-вуют между собой и пограничного слоя фактически нет.

С увеличением высоты уменьшается количество молекул в исследуемом объеме га-за, а это приводит к уменьшению силового взаимодействия частиц воздуха с обтекаемым телом. Силы взаимодействия между потоком и телом представляют собой суммарный им-пульс силы ударов частиц воздуха о поверхность обтекаемого тела.



На высотах Н 80 км в расчетах учитывается дискретная структура воздуха.

Рис 1.4.1 Схема гипотезы сплошности среды

Необходимым условием для дифференциального исчисления параметров и аэроди-намических сил при взаимодействии воздуха с телом, является непрерывность газодина-мических параметров ().

Жидкая среда заполняет тот или иной объем без каких-либо промежутков, сплошным образом. Жидкая среда, благодаря изменению расстояния между частицами, меняет внешнюю конфигурацию, т.е. деформируется. Для твердого тела подвижность частиц мала, а для жидких сред – велика. Поэтому, мерой подвижности частиц для жидких сред служат уже не сами смещения, а скорость смещения частиц, т.е. скорости деформаций. Следовательно, для сплошной жидкой среды мерами подвижности частиц служат их скорости и их скорости деформации. Замкнутая поверхность, состоящая из одних и тех же частиц, будет непрерывно деформироваться. Если нет разрыва сплошной среды, то реализуется непрерывность распределения в объеме скоростей и плотностей частиц.

Под частицей сплошной среды подразумевает не любую как угодно малую часть ее объема, а весьма небольшую его часть, содержащую все же внутри себя миллиарды молекул. В общем случае минимальная цена деления макроскопического масштаба пространственной  или временной t координаты должна быть достаточно малой, чтобы пренебречь изменением макроскопических физических величин в пределах  или t, и достаточно большой, чтобы пренебречь флуктуациями макроскопических величин, полученных осреднением микроскопических величин по времени t или элементу пространства  3 . Выбор минимальной цены деления макроскопического масштаба определяется характером решаемой задачи. Для промышленного аппарата можно с достаточной степенью точности принимать в качестве минимальной цены деления пространственных координат 1мм и временных координат 1с.

Движение макроскопических объемов среды приводит к переносу массы, импульса и энергии.

    1. Режимы движения жидких сред

При течение жидкой среды (жидкости) реализуется 2 режима:

Ламинарный,

Турбулентный.

При ламинарным режиме жидкость течет малой скоростью, отдельными струйками, не смешиваясь, параллельно стенкам канала. При этом траектории отдельных частиц не пересекаются, все частицы имеют лишь продольную составляющую скорости.

С увеличением скорости движения потока жидкости картина качественно меняется. Траектории частиц представляют сложные, хаотичные кривые, пересекающие между собой. Во всех точках потока скорость и давление нерегулярно изменяются с течением времени, пульсируют вокруг некоторых своих средних значений, возникают поперечные составляющие скорости. Этот режим движения жидкости называется турбулентным. Режим может меняться с изменением диаметра канала и вязкости жидкости. В турбулентном потоке можно говорить не об актуальных, но только об осредненных за достаточно протяженный отрезок времени величинах скорости и давления.

Между ламинарными и турбулентными режимами движения жидкости находится область развития турбулентности. В этой область турбулентность имеет переменную интенсивность, увеличивающуюся с ростом скорости.

При турбулентном режиме малые возмущения, возникающие в реальных условиях, не затухают, происходит развитие нерегулярного хаотичного движения отдельных объемов среды (вихрей). Вихри не являются устойчивыми, четко ограниченными в пространстве образованиями. Они зарождаются, распадаются на более мелкие вихри, затухают с переходом механической энергии в тепловую.

При выполнении расчетов гидравлических сопротивлений, тепловых и массообменных процессов, происходящих в аппаратах и машинах, необходимо знать режимы течения жидкостей, поскольку для ламинарного режима характерны одни закономерности, а для турбулентного – другие.

Количественно режим течения определяется по критерию Рейнольдса.

Для того чтобы стало возможным теоретическое исследование направленного движения жидкости с использованием математического аппарата исчисления бесконечно малых (дифференциального исчисления) и теории непрерывных функций (интегрального исчисления), необходимо выполнить определенную идеализацию жидкости и абстрагироваться от её дискретного молекулярного строения.

Все тела (в том числе и газообразные и капельной жидкости) состоят из отдельных элементарных частиц. Причём объёмы, занимаемые телами, значительно больше объёмов, в которых сосредоточено само вещество. По существу, все тела «состоят из пустоты», но в то же время в любом существенном для практических задач малом объёме пространства, занятого телом, заключено достаточно большое число частиц. Как правило, размеры рассматриваемых объёмов жидкости и твердых тел, обтекаемых этой жидкостью, оказываются несопоставимо бόльшими по сравнению с размерами молекул и межмолекулярными расстояниями. Указанные обстоятельства дают основание приближенно рассматривать жидкость как материальную среду, заполняющую пространство непрерывно сплошным образом , и ввести гипотезу сплошной среды , на основании которой реальные дискретные объекты заменяются упрощенными моделями материального континуума . Эти умозрительные выводы сформулированы в постулате Даламбера – Эйлера , утверждающем, что при изучении направленного движения жидкостей и сил взаимодействия их с твердыми телами, жидкости можно рассматривать как сплошную среду - континуум, лишенную молекул и межмолекулярных пространств .

Принимая гипотезу сплошности мы тем самым предполагаем макроскопическое поведение жидкостей одинаковым, как если бы их структура была идеально непрерывной, а физические величины, например масса и количество движения, связанные с тем веществом, которое содержится внутри рассматриваемого объёма, считаем равномерно распределённым по этому объёму, отвлекаясь от того, что в действительности они концентрируются в его малых частях.

Гипотеза сплошной среды (или гипотеза сплошности) – первый шаг на пути формирования моделей жидкости, рассматриваемых в различных разделах механики жидкости и газа и, в том числе, в газовой динамике. Такая идеализация существенно упрощает реальную дискретную среду и позволяет, в частности, при исследовании движения жидкости использовать хорошо разработанный математический аппарат исчисления бесконечно малых (дифференциального и интегрального исчислений) и теорию непрерывных функций.

Гипотеза сплошной среды даёт возможность придать определенный смысл понятию «значение в точке» , применяемому к различным параметрам жидкости, например плотности, скорости, температуре, и вообще считать эти величины непрерывными функциями координат и времени. На этом основании можно составить уравнения, описывающие движение жидкости (уравнения движения), форма которых не зависит от микроскопической структуры частиц этой жидкости. В этом смысле движения жидкостей и газов изучаются одинаково – уравнения не зависят от того, существует ли какая-либо структура частиц . Аналогичная гипотеза вводится в механике деформируемых твердых тел, и потому эти два предмета вместе часто называют механикой сплошных сред .


Несмотря на естественность гипотезы сплошной среды, определение свойств этой гипотетически непрерывной среды , которая движется таким же образом, как и реальная жидкость с данной структурой частиц, оказывается трудным делом. Используя методы кинетической теории газов, с помощью упрощающих предположений о столкновении молекул можно показать, что уравнения, определяющие локальную скорость газа, имеют такой же вид, как и в случае движения некоторой непрерывной жидкости (хотя значения коэффициентов молекулярного переноса определяются не строго). Математическое обоснование рассмотрения движения газов как движения сплошной среды обычно выходит за рамки традиционных курсов механики жидкости и газа и, тем более, прикладной гидро- или газодинамики. Более того, это обоснование неполно для капельных жидкостей и поэтому принято ограничиваться введением такой гипотезы.

Критерием приемлемости всякой физической гипотезы является степень совпадения результатов, полученных на её основе, с результатами наблюдений и измерений. Для капельных жидкостей и газов правомерность использования гипотезы сплошной среды в широком диапазоне изменения параметров полностью подтверждается. Обширные экспериментальные данные свидетельствуют о том, что обычные реальные жидкости в нормальных условиях, а зачастую и при значительных отклонениях от них, движутся так, как если бы они были непрерывны.

Количественные пределы применимости законов газовой динамики, основанной на модели сплошной среды, определяются величиной критерия Кнудсена .

«В гидродинамике и в задачах обычной газодинамики жидкость представляют как сплошную среду. Это тоже своеобразная модель жидкости. Это представление допускает, что объем жидкости можно дробить на какие угодно мелкие части, вплоть до бесконечно малых, но ее свойства при этом остаются теми же самыми. Иначе говоря, здесь не принимается во внимание молекулярная структура вещества. Представление о жидкости, как о сплошной среде, было вызвано необходимостью использовать для расчетов методы математического анализа, в которых приходится оперировать бесконечно малыми массами и объемами. Модель сплошной среды применима для несжимаемых жидкостей, а также для газов не очень низких плотностей. Если же плотность газа становится очень низкой, как, например, на больших высотах, то расстояние между молекулами (длина свободного пробега) становятся соизмеримыми с размерами обтекаемых тел, и модель сплошной среды уже никак не соответствует реальной картине обтекания».

& (Виноградов) с.11