Регулируемый аналог динистора. Почему в современных инверторах используют транзисторы, а не тиристоры Номиналы резисторов в аналоге динистора

М. МАРЬЯШ пос. Киропец Тернопольской обл.Серийно выпускаемые динисторы по электрическим параметрам не постоянно отвечают творческим интересам радиолюбителей-конструкторов. Нет, например, динисторов с напряжением включения 5...10 и 200...400 В. Все динисторы имеют важный разброс значения этого классификационного параметра, который к тому же зависит ещё от температуры окружающей среды. Кроме того, они рассчитаны на сравнительно малый коммутируемый ток (менее 0,2 А), а значит, небольшую коммутируемую мощность. Исключено плавное регулирование напряжения включения, что лимитирует область применения динисторов. Все это заставляет радиолюбителей прибегать к созданию аналогов динисторов с желаемыми параметрами.Поиском такого аналога длительное пора занимался и я. Как проверить микросхему к174пс1 Исходным был вариант аналога, составленный из стабилитрона Д814Д и тринистора КУ202Н (рис. 1). Пока напряжение на аналоге меньше напряжения стабилизации стабилитрона, закрыт и ток через него не течет. При достижении напряжения стабилизации стабилитрона он открывается сам, открывает тринистор и в целом. В результате в цепи, в которую включен, появляется ток. Значение этого тока определяется свойствами тринистора и сопротивлением нагрузки. Используя тринисторы...

Для схемы "Аналог высоковольтного стабилитрона"

Для схемы "Электронный предохранитель"

Как понятно, существует немало различных источников тока, у которых не предусмотрена броня от аварийных токовых перегрузок, - это практически все гальванические элементы и батареи, большинство аккумуляторов и батарей из них, сетевые блоки питания, собранные по простейшей схеме, и т. д. Тем не менее зачастую подобные источники используют для питания нагрузки в течение длительного времени без присмотра оператора.Если по той или иной причине происходит значительное прирост тока, потребляемого нагрузкой, это, безусловно, приведет к перегреванию такого источника и выходу его из строя, порой с весьма тяжелыми последствиями. Описываемое ниже устройство предназначено для автоматического отключения нагрузки от источника постоянного тока при возникновении перегрузки в ее цепи и для световой индикации аварийного состояния. Этот двуполюсник, подобно плавкому предохранителю, включают в разрыв плюсового провода нагрузочной цепи.Электронный предохранитель (см. схему на рис. 1) состоит из мощного составного коммутирующего элемента на транзисторах VT4VT3, токоизмерительного резистора R2, транзисторного аналога динистора VT1VT2 и шунтирующего транзистора VT5.При включении источника питания открывается составной транзистор VT4VT3 током, протекающим через резистор R1 и эмиттерный переход транзистора VT4. Радомкрофон схеми Остальные транзисторы остаются закрытыми. К нагрузке поступает номинальное напряжение, через нее протекает номинальный ток.При возникновении перегрузки падение напряжения на токоизмерительном резисторе становится достаточным для открывания аналога динистора. Вслед за ним открывается транзистор VT5 и шунтирует эмиттерный переход транзистора VT4. В результате этого закрываются транзисторы VT4 и VT3, отключая нагрузку от источника питания. Ток нагрузки резко уменьшается, но аналог динистора остается открытым.В этом состоянии предохранитель может находиться неограниченно длительно. Через нагрузку протекает остаточный ток, определяемый сопротивлением р...

Для схемы "Простой регулятор мощности"

Индуктивная нагрузка в цепи регулятора мощности предъявляет жесткие требования к схемам менеджмента симисторов- синхронизация системы менеджмента должна осуществляться непосредственно от питающей сети сигнал должен иметь длительность равную интервалу проводимости симистора. На рисунке приведена схема регулятора удовлетворяющего этим требованиям в котором используется сочетание и симистора Постоянная времени (R4 + R5)C3 определяет угол запаздывания отпирания VS1 а значит и симистора VS2 Перемещением ползунка переменного резистора R5 регулируют мощность потребляемую нагрузкой. Конденсатор С2 и резистор R2 используются для синхронизации и обеспечения длительности сигнала менеджмента Конденсатор СЗ перезаряжается от С2 после переключения так как в конце каждого полупериода на нем оказывается напряжение обратной полярности. Очень мошне зарядне устройство схема Для защиты от помех создаваемых регулятором введены два Фильтра R1C1 - в цепь питания и R7C4 - в цепь нагрузки. Для налаживания устройства нужно резистор R5 поставить в положение максимального сопротивления и резистором R3 установить минимальную мощность на нагрузке Конденсаторы С1 и С4 типа К40П-2Б на 400 В конденсаторы С2 и СЗ типа К73-17 на 250 В Диодный мост VD1 можно сменить диодами КД105Б Выключатель SA1 рассчитан на ток не менее 5 A. В.Ф.Яковлев, г.Шостка, Сумская обл. ...

Для схемы "QRP CW-передатчик"

Радиопередатчики, радиостанцииQRP CW-передатчикГ.Печень описал по материалам "ARRL HANDBOOK CD" схему QRP CW-передатчика, разработанного N7KSB. Микросхема 74НС240 (аналог - 1554АП4) -быстродействующий CMOS-буферный формирователь. На одном его элементе реализован задающий кварцевый генератор, четыре других используются как УМ, три оставшихся не используются. При Uпит.=7,8 В (стабилизатор 142ЕН8А) Рвых=0,51 Вт на 14, 21 МГц и 0,47 Вт на 28 МГц. В этом режиме микросхема требует теплоотвода, приклеенного к ее корпусу. Данные ФНЧ представлены в табл.1.Диапазон(м)101520С8 (пФ)330470680С9 (пФ)100150220L1 (витков)345,5L2 (витков)71012L1 и L2 - бескаркасные, проводом диаметром 1,6 мм на оправке 10 мм, длина намотки 16 мм (28 МГц) и 25 мм (21 и 14 МГц). Используя тот самый передатчик и антенну GP N7KSB работал со всеми континентами и более чем с 30 странами Радиолюбитель. KBи У KB N12/98, стр.25....

Для схемы "Тиристорный зарядный блок"

Тиристорный зарядный блок Красимира Рилчева предназначен для зарядки аккумуляторов грузовых автомобилей и тракторов. Он обеспечивает плавно (резистором RP1) зарядный ток до 30 А. Принцип регулирования - фазоимпульсный на основе тиристоров, обеспечивающий максимальный КПД, минимальную рассеиваемую мощность и не требующий мощных выпрямительных диодов. Сетевой трансформатор выполнен на магнитопроводе сечением 40 см2, первичная обмотка содержит 280 витков ПЭЛ-1,6, вторичная 2x28 витков ПЭЛ-3,0. Тиристоры установлены на радиаторах 120x120 мм. ...

Для схемы "ТИРИСТОРНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯ"

ЭлектропитаниеТИРИСТОРНЫЕ РЕГУЛЯТОРЫ НАПРЯЖЕНИЯС амплитуднофазовым менеджментом В регуляторе, схема которого показана на рис. 1, использованы два тринистора, открывающиеся один в положительный, а иной - в отрицательный полуперноды сетевого напряжения. Действующее напряжение на нагрузке Rн регулируют переменным резистором R3.Puc.1Регулятор работает следующим образом. В начале положительного полупериода (плюс на верхнем по схеме проводе) тринисторы закрыты. По мере увеличения сетевого напряжения конденсатор. С1 заряжается через резисторы R2 и R3. Увеличение напряжения на конденсаторе отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов R2 и R3 и емкости конденсатора С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога открывания тринистора Д1. Когда тринистор откроется, через нагрузку Rн потечет ток, определяемый суммарным сопротивлением открытого тринистора и Rн. Тринистор Д1 остается открытым до конца полупериода. Т160 схема регулятора тока Подбором резистора R1 устанавливают желаемые пределы регулирования. При указанных на схеме номиналах резисторов и конденсаторов напряжение на нагрузке можно изменять в пределах 40- 220 В.В течение отрицательного полупериода аналогично работает тринистор Д4. Однако, конденсатор С2, частично заряженный в течение положительного полупериода (через резисторы R4 и R5 и диод Д6), должен перезаряжаться, а значит и час задержки включения тринистора должно быть большим. Чем дольше был закрыт тринистор Д1 в течение положительного полупериода, тем большее напряжение будет на конденсаторе С2 к началу отрицательного итем дольше будет закрыт тринистор Д4. Синфазность работы тринисторов зависит от правильного подбора номиналов элементов R4, R5, С2. Мощность нагрузки может быть любой в пределах от 50 до 1000 Вт. И.ЧУШАНОК г. Гродно С фазоимпульсным менеджментом Регулятор, схема ко...

Для схемы "ПРОСТОЙ ТЕЛЕФОН"

ТелефонияПРОСТО ТЕЛЕФОНПредлагаю схему телефонного аппарата, которая обладает следующими отличительными свойствами по сравнению с просторно известными :- в вызывном устройстве отсутствует высоковольтный разделительный конденсатор, и оно постоянно включено в шлейф телефонной линии; - использование в качестве микрофонного и телефонного усилителей микросхем К1436УН1 (аналог МС34119) позволило сократить до минимума количество элементов "обвязки" разговорного узла. Данный телефон позволяет принять вызов и провести разговор. Его можно использовать для кухни, ванной комнаты и т.д. Разместить можно в корпусе детской игрушки, в пенале от зубной щетки. При желании схему можно дополнить и номеронабирателем. Микросхема звонка К 1436АП 1 (аналог DBL5001/2) включена по стандартной схеме. Единственное отличие - в цепь питания микросхемы включен стабилитрон VD2 с напряжением стабилизации 82 В. Благодаря ему вызывное устройство не шунтирует телефонную линию при наборе номера и при разговорном соединении. Как подключить реостат к зарядному устройству Разговорный узел собран на микросхемах D2 и D3. Конденсатор СЗ и резистор R6 - фильтр питания для микрофона ВМ1. С7 - блокировочный. Нагрузкой микросхемы D2 является резистор R8. Схема подавляет местный результат. Регулировка ее производится резистором R9. При стабильных параметрах R5, ВМ1, R7, R8 резистор R9 можно заместить на два постоянных резистора. Величина сигнала для телефона BF1 устанавливается резистором R10. Микросхема D3 запитывается от параметрического стабилизатора R6-VD5-C5. Конденсатор С8 - блокировочный. Из-за простоты и хорошей повторяемости эту схему можно использовать для улучшения старых телефонных аппаратов.Литература 1. Кизлюк А.И. Справочник по устройству и ремонту телефонных аппаратов отечественного и зарубежного производства. - М.: Библион, 1997.А.МИХАЛЕВИЧ, 220050, г.Минск, а/я 211, тел.296-25-48. (РЛ 12/98)В статье А.Михалевича "Просто телефон" на схеме выво...

Для схемы "УСИЛИТЕЛЬ С ДИСКРЕТНО РЕГУЛИРУЕМЫМ КОЭФФИЦИЕНТОМ ПЕРЕДАЧИ"

Радиолюбителю-конструкторуУСИЛИТЕЛЬ С ДИСКРЕТНО РЕГУЛИРУЕМЫМ КОЭФФИЦИЕНТОМ ПЕРЕДАЧИУсилитель, схема которого приведена на рисунке, может оказаться полезным многим радиолюбителям. Его коэффициент передачи изменяют переключением резисторов R2-R17 в цепи ООС, охватывающей ОУ DA1. Отечественный аналог ОУ 741 - К140УД7.Сопротивления этих резисторов подобраны таким образом, что в каждом следующем положении переключателя SA1 коэффициент передачи усилители изменяется на 3 дБ. Входное сопротивление усилителя - 10 кОм. Для коммутации резисторов необходим переключатель с безобрывным переключением (при переводе его из одного положения в другое цепь обратной связи не должна разрываться). Zesileni v krocich po 3 dB.- Sdelovaci technika, 1986, N4. с. 160. ...

Для схемы "ЗАЖИГАЛКА ДЛЯ ГАЗА"

Бытовая электроникаЗАЖИГАЛКА ДЛЯ ГАЗАВ доме не оказалось спичек, а в магазин их не завезли. Не беда - простую зажигалку для кухонной плиты можно собрать из десятка недифицитных радиоэлементов. Схема зажигалки (рис.1) состоит из двух генераторов. Первый построен на двух маломощных транзисторах, второй - на двух тиристорах. Каскад на транзисторах разной проводимости преобразует низковольтное постоянное напряжение в высоковольтное импульсное. Времязадающей цепочкой в этом генераторе служат элементы С 1, R2. При включении питания открывается транзистор VT1, и перепад напряжения на его коллекторе открывает транзистор VT2. Конденсатор С1, заряжаясь через резистор R 1, уменьшает базовый ток транзистора VT2 настолько, что транзистор VT 1 выходит из насыщения, а это приводит к закрыванию и VТ2. Транзисторы будут закрыты до тех пор, пока конденсатор С1 не разрядится через первичную об-мотку трансформатора Т1. Повышенное импульсное напряжение, снимаемое со вторичной обмотки трансформатора Т1, выпрямляется диодом VD1 и поступает на конденсатор С2 второго генератора с тринистором VS1 и динистором VS2. Как сделать схему ждущий сторож с малым потреблением В каждый положительныи полупериод накопительный онденсатор С2 заряжается до амплитудного значения напряжения, равного напряжению переключения VS2, т.е. до 56 В (номи-нальное импульсное отпирающее напряжение для трнистора типа КН 102Г). Переход динистора в открытое состояние воздействует на цепь менеджмента динистора VS 1, который в свою очередь тоже открывается. Конденсатор С2 разряжается через тринистор и первичную обмотку трансформатора Т2, после чего динистор и тринистор ещё закрываются и начинается очередной заряд конденсатора - цикл переключений повторяется. Со вторичной обмотки трансформатора Т2 снимаюся импульсы с амплитудой в несколько киловольт, которые подаются через наконечник зажи...

Тиристоры относятся к полупроводниковым приборам структуры p-n-p-n, и принадлежат, по сути, к особому классу , четырехслойных, трех (и более) переходных приборов с чередующейся проводимостью.

Устройство тиристора позволяет ему работать подобно диоду, то есть пропускать ток лишь в одном направлении.

И также как у полевого транзистора, у имеется управляющий электрод. При этом как диод, тиристор имеет особенность, - без инжекции неосновных рабочих носителей заряда через управляющий электрод он не перейдет в проводящее состояние, то есть не откроется.

Упрощенная модель тиристора позволяет нам понять, что управляющий электрод здесь аналогичен базе биполярного транзистора, однако имеется ограничение, которое заключается в том, что отпереть то тиристор с помощью этой базы можно, а вот запереть нельзя.

Тиристор, как и мощный полевой транзистор, конечно может коммутировать значительные токи. И в отличие от полевых транзисторов, мощности, коммутируемые тиристорами, могут исчисляться мегаваттами при высоких рабочих напряжениях. Но имеют тиристоры один серьезный недостаток — значительное время выключения.

Для того чтобы запереть тиристор, необходимо прервать или сильно уменьшить его прямой ток на достаточно продолжительное время, за которое неравновесные основные рабочие носители заряда, электронно-дырочные пары, успели бы рекомбинировать или рассосаться. Пока не прерван ток, тиристор будет оставаться в проводящем состоянии, то есть будет продолжать вести себя как .

Схемы коммутации переменного синусоидального тока обеспечивают тиристорам подходящий режим работы — синусоидальное напряжение смещает переход в обратном направлении, и тиристор автоматически запирается. Но для поддержания работы прибора, на управляющий электрод необходимо в каждом полупериоде подавать отпирающий управляющий импульс.

В схемах с питанием на постоянном токе прибегают к дополнительным вспомогательным схемам, функция которых — принудительно снизить анодный ток тиристора, и вернуть его в запертое состояние. А поскольку при запирании рекомбинируют носители заряда, то и скорость переключения тиристора сильно ниже, чем у мощного полевого транзистора.

Если сравнить время полного закрытия тиристора с временем полного закрытия полевого транзистора, то разница достигает тысяч раз: полевому транзистору чтобы закрыться нужно несколько наносекунд (10-100 нс), а тиристору требуется несколько микросекунд (10-100 мкс). Почувствуйте разницу.

Конечно, есть области применения тиристоров, где полевые транзисторы не выдерживают конкуренции с ними. Для тиристоров практически нет ограничений в предельно допустимой коммутируемой мощности — это их преимущество.

Тиристоры управляют мегаваттами мощности на больших электростанциях, в промышленных сварочных аппаратах они коммутируют токи в сотни ампер, а также традиционно управляют мегаваттными индукционными печами на сталелитейных заводах. Здесь полевые транзисторы никак не применимы. В импульсных же преобразователях средней мощности полевые транзисторы выигрывают.

Долгое выключение тиристора, как говорилось выше, объясняется тем, что будучи включенным, он требует для выключения снятия коллекторного напряжения, и подобно биполярному транзистору, у тиристора уходит конечное время на рекомбинацию или удаление неосновных носителей.

Проблемы, которые вызывают тиристоры в связи с этой своей особенностью, связаны прежде всего с невозможностью переключения с высокими скоростями, как это могут делать полевые транзисторы. А еще перед подачей на тиристор коллекторного напряжения, тиристор должен обязательно быть закрытым, иначе неизбежны коммутационные потери мощности, полупроводник чрезмерно при этом нагреется.

Иначе говоря, предельное dU/dt ограничивает быстродействие. График зависимости рассеиваемой мощности от тока и времени включения иллюстрирует эту проблему. Высокая температура внутри кристалла тиристора может не только вызвать ложное срабатывание, но и помешать переключению.

В резонансных инверторах на тиристорах проблема запирания решается сама собой, там выброс напряжения обратной полярности приводит к запиранию тиристора, при условии, что воздействие это достаточно длительное.

Так выявляется главное преимущество полевых транзисторов перед тиристорами. Полевые транзисторы способны работать на частотах в сотни килогерц, и управление сегодня не является проблемой.

Тиристоры же будут надежно работать на частотах до 40 килогерц, ближе к 20 килогерцам. Это значит, что если бы в современных инверторах использовались тиристоры, то аппараты на достаточно высокую мощность, скажем, на 5 киловатт, получались бы весьма громоздкими.

В этом смысле полевые транзисторы способствуют тому, что инверторы получаются более компактными за счет меньшего размера и веса сердечников силовых трансформаторов и дросселей.

Чем выше частота, тем меньшего размера требуются трансформаторы и дроссели для преобразования одной и той же мощности, это знает каждый, кто знаком со схемотехникой современных импульсных преобразователей.

Безусловно, в некоторых применениях тиристоры оказываются очень полезными, например , работающие на сетевой частоте 50 Гц, в любом случае выгоднее изготавливать на тиристорах, они получаются дешевле, чем если бы там применялись полевые транзисторы.

А в , например, выгоднее использовать полевые транзисторы, именно в силу простоты управления переключением и высокой скорости этого переключения. Кстати, при переходе с тиристорной схемы на транзисторную, несмотря на большую стоимость последних, из приборов исключаются лишние дорогостоящие компоненты.

Андрей Повный

В былые времена, когда требовалось выполнять переключения в электрических цепях при возрастании напряжения до некоторого порогового уровня, прибегали к использованию поляризованных электромагнитных реле. Однако существенные габариты и масса, недостаточная надежность кинематики и контактных пар сильно ограничивали применение этих устройств. Нынче на смену им пришли миниатюрные бесконтактные приборчики, именуемые динисторами. Это четырехслойные полупроводниковые диоды, структура которых представляет собой как бы два транзистора: p-n-p и n-p-n типа, причем база одного соединена с коллектором второго, образуя внутренние положительные обратные связи (рис. 1).

Пока приложенное к динистору напряжение Uo невелико, оба транзистора заперты. В результате, общее сопротивление прибора - порядка сотен кОм. Однако при напряжении, несколько превышающем Uо, возросший микроток из коллектора одного транзистора, втекая в базу второго, приоткрывает его.

Вынужденное увеличение тока коллектора второго транзистора усиленно воздействует на базу первого, также приоткрывая его. Этот лавинообразно нарастающий процесс приводит к полному отпиранию всей транзисторной пары, и динистор переходит в проводящее состояние (то есть сопротивление его падает до долей Ома).

Наглядной иллюстрацией может служить вольт-амперная характеристика динистора. Сразу же обращает на себя внимание восходящая ветвь АБ, характеризующая напряжение Uэс, которое данный прибор выдерживает, не теряя закрытого состояния. Ему соответствует нормируемый ток утечки Iэс.

Видно, что при увеличении напряжения на динисторе до порогового уровня (Uвкл) рабочая точка «соскальзывает» по участку БВ характеристики в проводящее состояние (круто идущая вверх линия ВГ), где ток становится максимальным, равным Ioc. Ограничивается он допустимым нагревом, лимитируемым сопротивлением внешнего резистора.

Важным параметром для динистора является минимальный прямой ток удержания Iуд (точка В), ниже которого происходит самовыключение прибора. К числу основных технических характеристик при перемене полярности, несомненно, относятся также обратные напряжение Uо6р и ток Iобр. Для отечественных динисторов самой, пожалуй, распространенной серии КН102 характерны: Iос 200 мА, Uос 1,5 В, Iуд 0,1-15 мА, Iэс 0,15мА,Iобр 0,5 мА. Обозначаемые буквами модификации этих приборов отличаются лишь величинами Uэс, Uобр, Uвкл (см. таблицу). Не лишне также знать, что в реальности показатель Uвкл имеет разброс, нижняя граница которого примерно вдвое ниже обычно публикуемых типовых паспортных данных.

Из сказанного выше ясно: для того, чтобы перевести динистор в выключенное состояние, нужно кратковременно прервать его ток, либо уменьшить (по сравнению с табличным значением Iуд) протекающий через него ток. Конфигурация и габариты всех представителей серии КН102 (рис. 1) аналогичны выпрямительным диодам Д226.

На основе динисторов можно собрать множество устройств: от простейших мультивибраторов и триггеров до сложных конструкций, рассчитанных на опытных радиолюбителей. Публикуемая ниже разработка ориентирована в первую очередь на начинающих самодельщиков. Это нужная в быту (особенно, если дом или дача газифицированы) электронная зажигалка.

Как видно из принципиальной электрической схемы (рис. 2), в состав рекомендуемого устройства входят помехозащитный фильтр C1R1C2R2, включаемый кнопкой SB1 двухдиодный выпрямитель с накопительным конденсатором C3, динистор VS1, импульсный трансформатор Т1 и коаксиальный элемент поджига. Работая в так называемом режиме удвоения, выпрямитель заряжает от бытовой осветительной сети накопительный конденсатор. И когда напряжение на С3 достигнет уровня Uвкл динистора VS1, последний переходит в проводящее состояние. Накопительный конденсатор тут же разряжается на первичную обмотку I импульсного трансформатора Т1. Соответственно, во вторичной обмотке II индуцируется высоковольтный импульс, и между коаксиальными электродами S1, S2 происходит искровой пробой, поджигающий газ из горелки.

Магнитопроводом импульсного трансформатора является ферритовый стержень диаметром 8 мм и длиной около 60 мм. Марка феррита - 400НН. Сначала такой магнитопровод обматывают двумя слоями изоленты. Затем размещают вторичную обмотку, которая содержит 1800 витков провода ПЭВ2-0,08. Далее следуют два новых слоя изоленты, и уже на них укладывают первичную обмотку (десять витков провода ПЭВ2-0,5) Элемент поджига представляет собой металлическую трубку (электрод S1) диаметром до 8 мм со сквозными пропилами, в которой соосно размещается отрезок вязальной спицы (электрод S2). Коаксиальность обеспечивается двумя шайбами-вставками из огнестойкого диэлектрика

Приобретя опыт при изготовлении электронной зажигалки, можно переходить к более сложным схемам, где динистор играет не менее важную роль. Например, в устройстве (рис. 3), позволяющем своевременно заметить ослабление изоляции, скажем, в холодильнике, стиральной машине или любом другом бытовом электроприборе. Включенное между металлическим корпусом используемой техники и «землей», в качестве которой может выступать, например, стальная труба водопровода, оно своевременно просигнализирует о появлении нежелательных 30 В - спутника стареющего электрооборудования.

Указанный уровень напряжения не случаен. Именно он признан еще безопасным для человека, но уже достаточным, чтобы судить о неблагополучии с изоляцией и желательности своевременного ремонта. Поэтому когда на корпусе контролируемой бытовой техники появляется 30 В, динистор VS1 устройства срабатывает, быстро разряжая конденсатор С1 на резистор R2. Возникающий при этом всплеск напряжения кратковременно отпирает транзистор VT1 (КТ3107А), в коллекторной цепи которого - светодиод НИ красного свечения (АЛ307Б).

Поскольку контролируемое переменное напряжение, поступая на схему, становится благодаря диоду VD1 (КД105Б) однополупериодным, постольку после разрядки конденсатора С1 (20 мкФ, 100 В) ток через динистор КН102Б прекращается. Но начинается очередной цикл заряда С1.

Изложенный процесс циклически повторяется с частотой сигнальных вспышек около 1 Гц. Цепь SB1R4 вводится для проверки работоспособности батареи (типа 3R12) путем принудительного отпирания транзистора.

В комплектацию устройства, помимо уже упомянутых радиодеталей, входят МЛТ-0,5 (R1) и МЛТ-0,25 (остальные резисторы), конденсатор К50-29, кнопка однополюсного включения и микротумблер (например, от старого карманного приемника). Большинство из них размещается на монтажной плате из односторонне фольгированного пластика толщиной 1,5 мм. Требуемая конфигурация псевдопечатных проводников достигается прорезанием изолирующих бороздок в токопроводящем слое.

А вот - самодельная конструкция для тех, кто вынужден пользоваться спаренным телефоном. В ее ценности убеждаешься, когда нужно позвонить, а линия, допустим, занята не в меру говорливым соседом. Оперативно получать достоверную информацию о том, что линия освободилась, не поднимая трубку на телефонном аппарате, помогает автоматический извещатель, собранный согласно принципиальной электрической схеме (рис. 4).

Дело в том, что при занятой линии напряжение на вводе в заблокированный аппарат равно нулю, но возрастает примерно до 40 В, когда линия освобождается. На это и реагирует динистор VS1, присоединенный к «плюсовому» проводу линии через цепочку C1R4, электрические параметры которой аналогичны цепи телефонного звонка.

Скачок линейного напряжения преобразуется благодаря конденсатору С1 в одиночный импульс, способный кратковременно отпирать динистор. Как раз такое состояние и фиксируется током, который будет Поступать от батареи GB1 через VS1 и HL1. В итоге - ровное сияние светодиода - своеобразное приглашение к тому, чтобы снять трубку аппарата и выключить не нужный более извещатель.

Роль диода VD1 - не пропустить к батарее сравнительно высоковольтный импульс от линии. Если нет подходящего динистора, то его можно заменить аналогом, собранным на транзисторах VT1 и VT2, показанным на принципиальной электрической схеме рядом с VS1.

Изготовить монтажную плату из фольгированного гетинакса или текстолита размерами 28x25x1,5 мм, думается, не составит особых трудностей. Найдутся и конденсатор К73-9 требуемой емкости, резисторы МЛТ-0,25 нужных номиналов, гальваническая батарея типа 3R12… При наличии внутри корпуса телефона достаточного места плату со смонтированными на ней радиодеталями можно разместить в самом аппарате, выведя наружу светодиод и головку микротумблера. Ну а в качестве источника электропитания использовать батарею, составленную из трех малогабаритных гальванических элементов типа R03 или миниатюрных СЦ-18.

П. ЮРЬЕВ

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Диодные тиристоры - динисторы находят широкое применение в различных устройствах автоматики. Однако такое использование динисторов имеет ряд недостатков, главный из которых заключается в следующем.

Напряжение включения самого низковольтного отечественного динистора КН102А составляет 20 В, а падение напряжения на нем в открытом состоянии - менее 2 В. Таким образом, к управляющему переходу тиристора после включения динистора прикладывается напряжение около 18 В. В то же время максимально допустимое напряжение на этом переходе для распространенных тиристоров серии К У 201, К У 202 равно всего лишь 10 В. А если еще учесть, что напряжение включения динисторов даже одного типа имеет разброс, достигающий 200%, то станет ясно, что управляющий переход тиристора испытывает чрезмерно большие перегрузки. Это и ограничивает применение динисторов для управления триодными тиристорами.

В подобных случаях можно использовать двухполюсники - аналоги динисторов , отличающиеся тем, что их напряжения включения могут быть гораздо меньше напряжения включения самого низковольтного динистора.

Схема одного из аналогов - транзисторного динистора показана на рис. 1. Он состоит из транзисторов разной структуры, включенных так, что ток базы одного из них является током коллектора другого и наоборот. Другими словами, это устройство, охваченное глубокой положительной обратной связью.

Рис. 1

При подключении питания через эмиттерный переход транзистора Т1 течет ток базы, в результате чего транзистор открывается, а это вызывает появление тока базы транзистора Т2.

Открывание этого транзистора приводит к росту тока базы транзистора Т1 , и, следовательно, дальнейшему его открыванию. Процесс протекает лавинообразно, поэтому очень скоро оба транзистора оказываются в насыщенном состоянии.

Напряжение включения такого устройства при использовании, например, транзисторов МП116 и МП113 равно всего лишь нескольким долям вольта, то есть практически не отличается от напряжения насыщения этой пары транзисторов. Это не позволяет использовать такой двухполюсник в качестве переключающего прибора. Если же эмиттерные переходы транзисторов Т1 и Т2 шунтировать резисторами, как показано на рис. 2, то напряжение включения устройства значительно возрастет.

Рис. 2

Причина этого явления - в уменьшении глубины положительной обратной связи, так как в базу каждого транзистора теперь ответвляется только часть коллекторного тока другого. В результате лавинообразный процесс открывания транзисторов протекает при более высоком напряжении. Напряжение включения можно изменять с помощью резисторов R1 и R2 .

Так, при их сопротивлениях, равных 5,1 кОм, напряжение включения составляет 9 В, при 3 кОм- 12 В. Результаты получены при плавном повышении напряжения на двухполюснике. Если же напряжение имеет импульсный характер, то включение может произойти и при меньших его величинах. Дело в том, что транзисторный аналог, как и обычный динистор чувствителен не только к величине приложенного к нему напряжения, но и к скорости его нарастания. Исключить возможность включения при напряжениях, меньших напряжения включения, можно, если шунтировать двухполюсник конденсатором С1 (см. рис. 2).

Рис. 3

Как и у динистора, напряжение включения транзисторного аналога уменьшается при повышении температуры. Этот недостаток легко устраним заменой резисторов R1 и R2 терморезисторами.

Схема другого аналога динистора показана на рис. 3. Напряжение включения такого двухполюсника определяется цепочкой, образованной стабилитроном Д1 и управляющим переходом тиристора Д2 , между которыми распределяется напряжение, приложенное к выводам двухполюсника. Когда это напряжение становится равным напряжению включения, стабилитрон пробивается, и через управляющий переход тиристора течет ток. Тиристор открывается, шунтируя стабилитрон и напряжение на выводах двухполюсника резко уменьшается. Напряжение включения устройства, показанного на рис. 3, равно 8 В.

Рис. 4

На рис. 4 приведена схема на триодном тиристоре Д5, в цепи управления которым применен последний из рассмотренных двухполюсников (стабилитрон Д6 и тиристор Д7). При закрытом тиристоре Д5 конденсатор С1 заряжается через нагрузку и резистор R2 током, выпрямленным диодами Д1-Д4.

Когда напряжение на конденсаторе становится равным напряжению включения двухполюсника, стабилитрон Д6 пробивается и открывает тиристор Д7. Конденсатор С1 разряжается через управляющий переход тиристора Д5 , в результате чего он также открывается и подключает нагрузку к выпрямителю на время, оставшееся до конца полупериода сетевого напряжения. В конце его тиристор закрывается, так как ток через него уменьшается до нуля, после чего цикл повторяется.

С помощью переменного резистора R2 можно изменять ток заряда конденсатора С2, а следовательно, и момент открывания тиристора Д5, то есть регулировать среднюю величину напряжения на нагрузке.

Динисторы – это разновидность полупроводниковых приборов, точнее – неуправляемых тиристоров. В своей структуре он содержит три p — n перехода и имеет четырёхслойную структуру.

Его можно сравнить с механическим ключом, то есть, прибор может переключаться между двумя состояниями – открытое и закрытое. В первом случае электрическое сопротивление стремится к очень низким величинам, во втором же, наоборот – может достигать десятков и сотен Мом. Переход между состояниями происходит скачкообразно.

Вконтакте

Динистор DB 3

Данный элемент не получил широкого распространения в радиоэлектронике, но всё равно часто применяется в схемах устройств с автоматическим переключением, преобразователях сигналов и генераторов релаксационных колебаний.

Как работает прибор?

Для пояснения принципа работы динистора db 3 обозначим имеющиеся в нём p — n переходы как П1, П2 и П3 следуя по схеме от анода к катоду.

В случае прямого включения прибора к источнику питания, прямое смещение приходится на переходы П1 и П3, а П2, в свою очередь, начинает работать в обратном направлении. При таком режиме, db 3 считается закрытым. Падение напряжения происходит на П2 переход.

Ток в закрытом состоянии определяется током утечки, который имеет очень маленькие значения (сотые доли МкА). Медленное и плавное увеличение подаваемого напряжения, вплоть до максимального напряжения закрытого состояния (напряжения пробоя), не будет способствовать значительному изменению тока. Но при достижении этого напряжения, ток увеличивается скачком, а напряжение, наоборот – падает.

В таком режиме работы, прибор на схеме приобретает минимальные значения сопротивления (от сотых долей ом до единиц) и начинает считаться открытым. Для того чтобы закрыть прибор, то на нём нужно уменьшить напряжение. В схеме с обратным подключением, переходы П1 и П3 закрыты, П2 открыт.

Динистор db 3. Описание, характеристики и аналоги

Динистор db 3 – одна из популярнейших разновидностей неуправляемых тиристоров. Применяется чаще всего в преобразователях напряжения люминесцентных лам и трансформаторов. Принцип работы данного прибора такой же, как и у всех неуправляемых тиристоров, отличия лишь в параметрах.

Характеристики прибора:

  • Напряжение открытого динистора – 5В
  • Максимальный ток открытого динистора – 0.3А
  • Импульсный ток в открытом состоянии – 2А
  • Максимальное напряжение закрытого прибора – 32В
  • Ток в закрытом приборе – 10А

Динистор db 3 может работать при температурах от -40 до 70 градусов Цельси я.

Проверка db 3

Выход из строя такого прибора– редкое событие, но, тем не менее оно всё-таки может случиться. Поэтому проверка динистора db 3 – важный вопрос для радиолюбителей и ремонтников радиоаппаратуры.

К сожалению, из-за технических особенностей данного элемента, проверить его обычным мультиметром не получится . Единственное действие, которое можно реализовать с помощью тестера – это прозвонка. Но подобная проверка не даст нам точных ответов на вопросы о работоспособности элемента.

Однако это совсем не означает, что проверить прибор невозможно или просто тяжело. Для действительно информативной проверки о состоянии этого элемента, нам необходимо собрать простенькую схему, состоящую из резистора, светодиода и самого динистора. Подключаем элементы последовательно в следующем порядке – анод динистора к блоку питания, катод к резистору, резистор к аноду светодиода. В качестве источника питания необходимо использовать регулируемый блок с возможностью поднятия напряжения до 40 вольт.

Процесс проверки по данной схеме заключается в постепенном увеличении напряжения на источнике с целью загорания светодиода . В случае рабочего элемента, светодиод загорится при напряжении пробоя и открытии динистора. Проведя операцию в обратном порядке, то есть уменьшая напряжение, мы должны увидеть, как светодиод погаснет.

Помимо данной схемы, существует способ проверки с помощью осциллографа .

Схема проверки будет состоять из резистора, конденсатора и динистора, включение которого будет параллельным конденсатору. Подключаем питание 70 вольт. Резистор – 100кОм. Схема работает следующим образом – конденсатор заряжается до напряжения пробоя и резко разряжается через db3. После процесс повторяется. На экране осциллографа мы обнаружим релаксационные колебания в виде линий.

Аналоги db 3

Несмотря на редкость выхода прибора из строя, иногда это происходит и необходимо искать замену. В качестве аналогов, на которые можно заменить наш прибор, предлагаются следующие виды динисторов :

  • HT-32
  • Отечественный КН102А

Как мы видим, аналогов прибора очень мало, но его можно заменить некоторыми полевыми транзисторами, по особым схемам включения, например, STB120NF10T4.