Состояние. Количество тепла при переходе тела в другое агрегатное состояние

СОСТОЯНИЕ

СОСТОЯНИЕ

СОСТОЯ́НИЕ , состояния, ср.

1. только ед. Пребывание в каком-нибудь положении (книжн.). Состояние в кадровых войсках.

2. Положение, в котором кто-нибудь или что-нибудь находится. Быть в состоянии войны с кем-нибудь. «Война для капиталистических стран является таким же естественным и законным состоянием, как эксплуатация рабочего класса.» История ВКП(б) . Состояние современной Европы. Состояние бюджета. Сосостояние здоровья. Состояние погоды. Прийти в негодное состояние. Находиться в образцовом состоянии.

3. Настроение, расположение духа. «С некоторого времени он был в раздражительном и напряженном состоянии, похожем на ипохондрию.» Достоевский . Состояние тоски. Состояние восторга. Созерцательное состояние.

|| Физическое самочувствие. «Он переживал мучительное состояние "перегара".» Чехов . Обморочное состояние. Нетрезвое состояние. Состояние опьянения.

4. Звание, социальное положение (устар.). Люди всякого состояния. «Какая смесь одежд и лиц, племен, наречий, состояний!» Пушкин . Лишение всех прав состояния. Гражданское состояние.

5. Имущество, собственность частного лица. «Составлю себе дьявольское состояние.» Сухово-Кобылин . Небольшое состояние. Крупное состояние.

|| Значительное имущество, богатство (принадлежащее частному лицу). Сколотить состояние. Человек с состоянием. «- Есть состояние? спросил тот. - Нет; каких-нибудь сто душонок.» Гончаров . «Не одно, - целых три состояния на своем ты веку проживешь!» Некрасов .

❖ В состоянии с инф. - обладать возможностью, мочь. Я не в состоянии поднять такую тяжесть. Он в состоянии сказать дерзость.


Толковый словарь Ушакова . Д.Н. Ушаков. 1935-1940 .


Синонимы :

Смотреть что такое "СОСТОЯНИЕ" в других словарях:

    состояние - Состояние изделия, которое может привести к тяжелым последствиям: травмированию людей, значительному материальному ущербу или неприемлемым экологическим последствиям. Источник: ГОСТ Р 53480 2009: Надежность в технике. Термины и определения ориги … Словарь-справочник терминов нормативно-технической документации

    СОСТОЯНИЕ - (1) аморфное (рентгеноаморфное) состояние твёрдого вещества, в котором нет кристаллической структуры (атомы и молекулы расположены беспорядочно), оно изотропно, т. е. имеет одинаковые физ. свойства по всем направлениям и не имеет чёткой… … Большая политехническая энциклопедия

    Бизнес * Банкротство * Бедность * Благополучие * Богатство * Воровство * Выгода * Деньги * Долги * Скупость * Золото * Игра * Идея * Конкуренция * Планирование * Прибыль * … Сводная энциклопедия афоризмов

    Категория науч. познания, характеризующая способность движущейся материи к проявлению в различных формах с присущими им существ. свойствами и отношениями. «...Всё и вся бывает как в себе, так и для других в отношении к другому,… … Философская энциклопедия

    состояние - Ваши чувства, ваше настроение. Единство неврологических и физических процессов, протекающих в индивидууме в любой момент времени. Состояние, в котором мы находимся, оказывает влияние на наши способности и интерпретации опыта. Целостный феномен… … Большая психологическая энциклопедия

    См. добро, имущество, положение, сословие быть в состоянии что л. сделать, в состоянии легкого опьянения, приводить в цветущее состояние, расстроить состояние... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.:… … Словарь синонимов

    СОСТОЯНИЕ, я, ср. 1. см. состоять. 2. Положение, внешние или внутренние обстоятельства, в к рых находится кто что н. В состоянии войны. С. погоды. С. здоровья. В состоянии покоя. 3. Физическое самочувствие, а также расположение духа, настроение.… … Толковый словарь Ожегова

    Англ. situation(1, 4)/ condition(2)/status(3); нем. Zustand. 1. Характеристика любой системы, отражающая ее положение относительно координатных объектов среды. 2. Физическое самочувствие, настроение. 3. Соц. положение, звание. 4. Имущество,… … Энциклопедия социологии

    Нестояния. Жарг. мол. Шутл. ирон. 1. О сильном опьянении. 2. О сильной усталости. Максимов, 398 … Большой словарь русских поговорок

    - (estate) 1. Общая сумма активов какого либо лица за вычетом его обязательств (обычно данный термин фигурирует при оценке имущества, производимой в целях обложения его налогом на наследство (inheritance tax) после смерти этого лица). 2.… … Словарь бизнес-терминов

Книги

  • Состояние населения в десяти губерниях Царства Польского к 1 января 1893 года , . Состояние населения в десяти губерниях Царства Польского к 1 января 1893 года: Налич. население, постоян., непостоян. и иностранцы. Вероисповед. состав. Плотность населения по отдел. гминам…

природных объектов и систем) - качественная и количественная характеристика множества их функциональных и интегративных реальных и потенциальных возможностей, множества их признаков, параметров в пространстве и времени (см. например, стационарное состояние).

Отличное определение

Неполное определение ↓

СОСТОЯНИЕ

совокупность основных параметров и характеристик какого-либо объекта, явления или процесса в определенный момент (или интервал) времени. Бытие этого объекта, явления или процесса выступает как развертывание, последовательная смена его состояний. Понятие состояния имеет исключительно широкое применение. Так, говорят о газообразном состоянии вещества, о состоянии движения тела, о болезненном состоянии человека, о состоянии морали в обществе и т. п.

Особенно существенно понятие для характеристики динамических систем. Оно предстает как реализация в некоторый момент времени параметров (свойств), определяющих поведение и развитие системы. Законы динамики систем и есть законы взаимосвязи состояний во времени. Связь состояний принято характеризовать как выражение принципа причинности: некоторое исходное состояние системы в сочетании с внешними воздействиями, которые испытывает система в рассматриваемый промежуток времени, есть причина его последующих состояний. Понятие состояния является центральным при изучении изменений, движения и развития объектов и систем. Решение конкретных исследовательских задач основывается, с одной стороны, на знании и применении соответствующих законов, а с другой, - на задании начальных условий. «Мир очень сложен, - отмечал Е. Вигнер, - и человеческий разум явно не в состоянии полностью постичь его. Именно поэтому человек придумал искусственный прием - в сложной природе мира винить то, что принято называть случайным, - и т. о. смог выделить область, которую можно описать с помощью простых закономерностей. Сложности получили название начальных условий, а то, что абстрагировано от случайного, - законов природы. Каким бы искусственным ни казалось подобное разбиение мира при самом беспристрастном подходе и даже вопреки тому, что возможность его осуществления имеет свои пределы, лежащая в основе такого разбиения абстракция принадлежит к числу наиболее плодотворных идей, выдвинутых человеческим разумом. Именно она позволила создать естественные науки» (Вигнер Е. Этюды о симметрии. М., 1971, с. 9). Задание начальных условий и есть по существу задание некоторого исходного состояния исследуемой системы, что необходимо для ее дальнейшего анализа.

При определении начального (исходного) состояния нужно учитывать законы взаимосвязей параметров систем, наличие которых приводит к тому, что для описания исходного состояния необходимо задать значения только независимых параметров. Следует, однако, учитывать, что между параметрами систем существуют и субординационные, иерархические зависимости. Для описания состояний особенно сложных, многоуровневых систем необходимо задать и структуру, структурные характеристики. Так, в статистических системах состояния определяются не путем задания характеристик отдельных элементов или индивидуальных состояний каждого элемента, а на языке вероятностных распределений - через характеристику вида, типа распределений. В сложных системах состояния определяются на основе более общих характеристик, относящихся к более высоким уровням организации систем. Тем самым представления о состояниях соотносятся с анализом глубинных свойств исследуемых систем.

Понятие состояния является одним из ключевых для характеристики нелинейных систем и взаимодействий. Свойства нелинейных систем зависят от их состояния. Их важнейшая особенность - нарушение в них принципа суперпозиции: результат одного из воздействий в присутствии другого оказывается не таким, каким он был бы, если бы это другое воздействие отсутствовало. Иначе говоря, аддитивность причин приводит к аддитивности следствий. В нелинейных же системах общий результат ряда воздействий на систему (ее итоговое состояние) определяется не простым суммированием наличных воздействий, но и их взаимовлиянием. Нелинейными являются практически все физические системы; еще более это характерно для химических, биологических и социальных систем, которым присущи качественные преобразования. Поведение систем с возрастанием их сложности все сильнее определяется их внутренней динамикой, которая порождает процессы самоорганизации. Состояния систем изменяются под влиянием не только внешних воздействий, но и по внутренним основаниям. Акцент на этих внутренних основаниях находит выражение в том, что первостепенное внимание начинает уделяться таким понятиям и представлениям как неустойчивость, неравновесность, необратимость, самоусиление процессов, бифуркации, многовариантность путей изменения и развития.

Отличное определение

Неполное определение ↓

Агрегатное состояние вещества

Вещество – реально существующая совокупность частиц, связанных между собой химическими связями и находящихся при определенных условиях в одном из агрегатных состояний. Любое вещество состоит из совокупности очень большого числа частиц: атомов, молекул, ионов, которые могут объединяться между собой в ассоциаты, называемые также агрегатами или кластерами. В зависимости от температуры и поведения частиц в ассоциатах (взаимное расположение частиц, их число и взаимодействие в ассоциате, а также распределение ассоциатов в пространстве и их взаимодействии между собой) вещество может находиться в двух основных агрегатных состояниях – кристаллическом (твердом) или газообразном, и в переходных агрегатных состояниях – аморфном (твердом), жидкокристаллическом, жидком и парообразном. Твердое, жидкокристаллическое и жидкое агрегатные состояния являются конденсированными, а парообразное и газообразное – сильно разряженными.

Фаза – это совокупность однородных микрообластей, характеризующихся одинаковой упорядоченностью и концентрацией частиц и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании фаза характерна только для веществ, находящихся в кристаллическом и газообразном состояниях, т.к. это однородные агрегатные состояния.

Метафаза – это совокупность разнородных микрообластей, отличающихся друг от друга степенью упорядоченности частиц или их концентрацией и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании метафаза характерна только для веществ, находящихся в неоднородных переходных агрегатных состояний. Разные фазы и метафазы могут смешиваться между друг с другом, образуя одно агрегатное состояние, и тогда между ними нет поверхности раздела.

Обычно не разделяют понятия «основное» и «переходное» агрегатные состояния. Понятия «агрегатное состояние», «фаза» и «мезофаза» часто используют как синонимы. Целесообразно рассматривать для состояния веществ пять возможных агрегатных состояний: твердое, жидкокристаллическое, жидкое, парообразное, газообразное. Переход одной фазы в другую фазу называют фазовым переходом первого и второго рода. Фазовые переходы первого рода характеризуются:

Скачкообразным изменением физических величие, описывающих состояние вещества (объем, плотность, вязкость и т.д.);

Определенной температурой, при которой совершается данный фазовый переход

Определенной теплотой, характеризующий данный переход, т.к. рвутся межмолекулярные связи.

Фазовые переходы первого рода наблюдаются при переходе из одного агрегатного состояния в другое агрегатное состояние. Фазовые переходы второго рода наблюдаются при изменении упорядоченности частиц в пределах одного агрегатного состояния, характеризуются:

Постепенное изменение физических свойств вещества;

Изменение упорядоченности частиц вещества под действием градиента внешних полей или при определенной температуры, называемой температурой фазового перехода;

Теплота фазовых переходов второго рода равна и близка к нулю.

Главное различие фазовых переходов первого и второго рода заключается в том, что при переходах первого рода, прежде всего, изменяется энергия частиц системы, а в случае переходов второго рода – упорядоченность частиц системы.

Переход вещества из твердого состояния в жидкое называется плавлением и характеризуется температурой плавления. Переход вещества из жидкого в парообразное состояние называется испарением и характеризуется температурой кипения. Для некоторых веществ с небольшой молекулярной массой и слабым межмолекулярным взаимодействием возможен непосредственный переход из твердого состояния в парообразное, минуя жидкое. Такой переход называется сублимацией. Все перечисленные процессы могут протекать и в обратном направлении: тогда их называют замерзанием, конденсацией, десублимацией.

Вещества, не разлагающиеся при плавлении и кипении, могут находиться в зависимости от температуры и давления во всех четырех агрегатных состояниях.

Твердое состояние

При достаточно низкой температуре практически все вещества находятся в твердом состоянии. В этом состоянии расстояние между частицами вещества сопоставимы с размерами самих частиц, что обеспечивает их сильное взаимодействие и значительное превышение у них потенциальной энергии над кинетической энергией.. Движение частиц твердого вещества ограничено только незначительными колебаниями и вращениями относительно занимаемого положения, а поступательное движение у них отсутствует. Это приводит к внутренней упорядоченности в расположении частиц. Поэтому для твердых тел характерна собственная форма, механическая прочность, постоянный объем (они практически несжимаемы). В зависимости от степени упорядоченности частиц твердые вещества разделяются на кристаллические и аморфные.

Кристаллические вещества характеризуются наличием порядка в расположении всех частиц. Твердая фаза кристаллических веществ состоит из частиц, которые образуют однородную структуру, характеризующуюся строгой повторяемостью одной и той же элементарной ячейки во всех направлениях. Элементарная ячейка кристалла характеризует трехмерную периодичность в расположении частиц, т.е. его кристаллическую решетку. Кристаллические решетки классифицируются в зависимости от типа частиц, составляющих кристалл, и от природы сил притяжения между ними.

Многие кристаллические вещества в зависимости от условий (температура, давление) могут иметь разную кристаллическую структуру. Это явление называется полиморфизмом. Общеизвестные полиморфные модификации углерода: графит, фуллерен, алмаз, карбин.

Аморфные (бесформенные) вещества. Это состояние характерно для полимеров. Длинные молекулы легко изгибаются и переплетаются с другими молекулами, что приводит к нерегулярности в расположении частиц.

Отличие аморфных частиц от кристаллических:

    изотропия – одинаковость физических и химических свойств тела или среды по всем направлениям, т.е. независимость свойств от направления;

    отсутствие фиксированной температуры плавления.

Аморфную структуру имеют стекло, плавленый кварц, многие полимеры. Аморфные вещества менее устойчивы, чем кристаллические, и поэтому любое аморфное тело со временем может перейти в энергетически более устойчивое состояние – кристаллическое.

Жидкое состояние

При повышении температуры энергия тепловых колебаний частиц возрастает, и для каждого вещества имеется температура, начиная с которой энергия тепловых колебаний превышает энергию связей. Частицы могут совершать различные движения, смещаясь относительно друг друга. Они еще остаются в контакте, хотя правильная геометрическая структура частиц нарушается – вещество существует в жидком состоянии. Вследствие подвижности частиц для жидкого состояния характерны броуновское движение, диффузия и летучесть частиц. Важным свойством жидкости является вязкость, которая характеризует межассоциатные силы, препятствующие свободному течению жидкости.

Жидкости занимают промежуточное положение между газообразным и твердым состоянием веществ. Более упорядочная структура, чем газ, но менее чем твердое вещество.

Паро – и газообразное состояния

Паро-газообразное состояние обычно не различают.

Газ – это сильно разряженная однородная система, состоящая из отдельных молекул, далеко отстоящих друг от друга, которую можно рассматривать как единую динамическую фазу.

Пар - это сильно разряженная неоднородная система, представляющая собой смесь молекул и неустойчивых небольших ассоциатов, состоящих из этих молекул.

Молекулярно-кинетическая теория объясняет свойства идеального газа, основываясь на следующих положениях: молекулы совершают непрерывное беспорядочное движение; объем молекул газа пренебрежимо мал по сравнению с межмолекулярными расстояниями; между молекулами газа не действуют силы притяжения или отталкивания; средняя кинетическая энергия молекул газа пропорциональна его абсолютной температуре. Вследствие незначительности сил межмолекулярного взаимодействия и наличия большого свободного объема для газов характерны: высокая скорость теплового движения и молекулярной диффузии, стремление молекул занять как можно больший объем, а также большая сжимаемость.

Изолированная газофазная система характеризуется четырьмя параметрами: давлением, температурой, объемом, количеством вещества. Связь между данными параметрами описывается уравнением состояния идеального газа:

R = 8,31 кДж/моль – универсальная газовая постоянная.

Агрегатным состоянием вещества принято называть его способность сохранять свою форму и объем. Дополнительный признак – способы перехода вещества их одного агрегатного состояния в другое. Исходя из этого, выделяют три агрегатных состояния: твердое тело, жидкость и газ. Видимые свойства их таковы:

Твердое тело – сохраняет и форму, и объем. Может переходить как в жидкость путем плавления, так и непосредственно в газ путем сублимации.
- Жидкость – сохраняет объем, но не форму, то есть обладает текучестью. Пролитая жидкость стремится неограниченно растечься по поверхности, на которую вылита. В твердое тело жидкость может перейти путем кристаллизации, а в газ – путем испарения.
- Газ – не сохраняет ни формы, ни объема. Газ вне какого-нибудь вместилища стремится неограниченно расшириться во все стороны. Помешать ему в этом может только сила тяжести, благодаря чему земная атмосфера не рассеивается в космос. В жидкость газ переходит путем конденсации, а непосредственно в твердое тело может перейти путем осаждения.

Фазовые переходы

Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, так как научный агрегатного состояния – фаза вещества. Например, вода может существовать в твердой фазе (лед), жидкой (обычная вода) и газообразной (водяной пар).

На примере воды также хорошо демонстрируется . Вывешенное во дворе на просушку в морозный безветренный день тут же промерзает, но спустя некоторое время оказывается сухим: лед сублимирует, непосредственно переходя в водяной пар.

Как правило, фазовый переход из твердого тела в жидкость и газ требует нагрева, но температура среды при этом не повышается: тепловая энергия уходит на разрыв внутренних связей в веществе. Это так называемая скрытая теплота . При обратных фазовых переходах (конденсации, кристаллизации) эта теплота выделяется.

Именно поэтому так опасны ожоги паром. Попадая на кожу, он конденсируется. Скрытая теплота испарения/конденсации воды очень велика: вода в этом отношении – аномальное вещество; именно поэтому и возможна жизнь на Земле. При ожоге паром скрытая теплота конденсации воды «прошпаривает» обожженное место очень глубоко, и последствия парового ожога оказываются куда тяжелее, чем от пламени на такой же площади тела.

Псевдофазы

Текучесть жидкой фазы вещества определяется ее вязкостью, а вязкость – характером внутренних связей, которым посвящен следующий раздел. Вязкость жидкости может быть очень высокой, и такая жидкость может течь незаметно для глаза.

Классический пример – стекло. Оно не твердое тело, а очень вязкая жидкость. Обратите внимание, что листы стекла на складах никогда не хранят прислоненными наискось к стене. Уже через несколько дней они прогнутся под собственной тяжестью и окажутся непригодными к употреблению.

Другие псевдотвердых тел – сапожный вар и строительный . Если забыть угловатый кусок на крыше, за лето он растечется в лепешку и прилипнет к основе. Псевдотвердые тела отличить от настоящих можно по характеру плавления: настоящие при нем либо сохраняют свою форму, пока враз не растекутся (припой при ), либо оплывают, пуская лужицы и ручейки (лед). А очень вязкие жидкости постепенно размягчаются, как тот же вар или битум.

Чрезвычайно вязкими жидкостями, текучесть которых не заметна на протяжении многих лет и десятилетий, являются пластики. Высокая их способность сохранять форму обеспечивается огромным молекулярным весом полимеров, во многие тысячи и миллионы атомов водорода.

Структура фаз вещества

В газовой фазе молекулы или атомы вещества отстоят друг от друга очень далеко, во много раз больше, чем расстояние между ними. Взаимодействуют они между собой изредка и нерегулярно, только при столкновениях. Само взаимодействие упругое: столкнулись, как твердые шарики, и тут же разлетелись.

В жидкости молекулы/атомы постоянно «чувствуют» друг друга за счет очень слабых связей химической природы. Эти связи все время рвутся и тут же опять восстанавливаются, молекулы жидкости непрерывно перемещаются относительно друг друга, поэтому жидкость и течет. Но чтобы превратить ее в газ, нужно разорвать все связи сразу, а на это нужно очень много энергии, потому жидкость и сохраняет объем.

Вода в этом отношении отличается от прочих веществ тем, что ее молекулы в жидкости связаны так называемыми водородными связями, довольно прочными. Поэтому вода и может быть жидкостью при нормальной для жизни температуре. Многие вещества с молекулярной массой в десятки и сотни раз больше, чем у воды, в нормальных условиях – газы, как хотя бы обычный бытовой газ.

В твердом теле все его молекулы прочно стоят на своих местах благодаря сильным химическим связям между ними, образуя кристаллическую решетку. Кристаллы правильной формы требуют для своего роста особых условий и потому в природе встречаются редко. Большинство твердых тел представляют собой прочно сцепленные силами механической и электрической природы конгломераты мелких и мельчайших кристалликов – кристаллитов.

Если читателю доводилось видеть, например, треснувшую полуось автомобиля или чугунный колосник, то зерна кристаллитов на сломе там видны простым глазом. А на осколках разбитой фарфоровой или фаянсовой посуды их можно наблюдать под лупой.

Плазма

Физики выделяют и четвертое агрегатное состояние вещества – плазму. В плазме электроны оторваны от атомных ядер, и она представляет собой смесь электрически заряженных частиц. Плазма может быть очень плотной. Например, один кубический сантиметр плазмы из недр звезд – белых карликов, весит десятки и сотни тонн.

Плазму выделяют в отдельное агрегатное состояние потому, что она активно взаимодействует с электромагнитными полями из-за того, что ее частицы заряжены. В свободном пространстве плазма стремится расшириться, остывая и переходя в газ. Но под воздействием она может вне сосуда сохранять форму и объем, как твердое тело. Это свойство плазмы используется в термоядерных энергетических реакторах – прообразах энергоустановок будущего.

Одна из теорий, находящихся в основе древней китайской науки, это теория о пяти элементах. Она имеет глубокое и разностороннее влияние на астрологию, психологию и китайскую медицину.

Древняя китайская наука основывалась на нескольких центральных теориях, имеющих взаимопроникающее влияние одна на другую. Среди них: Тай-чи, говорящая о полярных энергиях инь и ян, книга триграмм И-Цзин, помогающая прогнозировать будущее, и теория о пяти элементах, о которой пойдёт речь в этой статье.

Сегодня принято относиться к пяти элементам как к пяти видам движущих сил. Они представляют пять различных состояний потока жизненной энергии ци. Они также демонстрируют переходы из одного состояния в другое и взаимное влияние различных состояний друг на друга.

Пять элементов в китайской философии - это металл, дерево, вода, огонь и земля. Каждый из элементов представляет собой определённое энергетическое состояние и часть жизненного потока вокруг нас. Дерево символизирует весну, набухшие почки, огонь - лето и цветение, земля - центр равновесия, смену времён года и этап созревания. Металл соответствует осени и увяданию, а вода - это зима и зимняя спячка.

Переход пяти элементов из одного состояния в другое - это динамический и плавный процесс. Он воплощён в окружающей нас среде, в никогда не прекращающемся потоке. Каждое изменение в потоке, как, например, убыстрение или замедление, влияет на весь процесс циркуляции и перехода из состояния в состояние.

Созидание и сдерживание

Теория "Пяти элементов" показывает два цикла взаимодействия между различными элементами. Первый представляет созидание, питание, и в нем каждый элемент создает или питает последующий за ним элемент в круге: дерево питает огонь, огонь создает землю (пепел), земля образует металл, сформированный в ее недрах, металл порождает воду и вода питает дерево. Другой цикл, изображенный параллельно, представляет сдерживание (разрушение) - он подробно объясняет, как эти пять энергий обуздывают одна другую: дерево воздействует на землю своими корнями, почва поглощает воду, вода гасит огонь, огонь расплавляет металл и металл рубит дерево.

На многих рисунках пять элементов представлены пятиконечной звездой вписанной в круг. Круг представляет цикл созидания, который создает и питает - в нем один элемент питает последующий, тогда как звезда представляет цикл сдерживания (разрушения) в различных ситуациях.

Этот цикл созидания и сдерживания, представляющий поток природных процессов, существует и в нашем теле. Пять ближайших к нам планет, которые можно увидеть воочию, без телескопа, соотносятся с пятью элементами: Меркурий - вода, Венера - металл, Марс - огонь, Юпитер - дерево, Сатурн - почва. Китайская астрология использует пять элементов для предсказания судьбы человека. Стороны света также соотносятся с пятью элементами: Дерево - символизирует Восток, Огонь - Юг, Земля - центр, Металл - Запад, Вода - Север. Каждый элемент также соотносится с разными погодными явлениями, фруктами, зерновыми культурами и домашними животными.

Дополнительный аспект, связанный с пятью элементами, - это наши чувства. Гнев - это Дерево, радость - Огонь, любовь - Земля, грусть - Металл, страх - Вода. Мы видим, что радость питает любовь, но может привести к страданию. С другой стороны, эта любовь может так же быть сдерживающим фактором страха.

В нашем организме пять элементов играют еще более важную роль. Многие аспекты китайской медицины основаны на пяти элементах и их сочетаниях. Внутренние органы классифицируются в соответствии с пятью элементами и, таким образом, можно узнать о соотношении питания и сдерживания между ними. Можно изучать влияние изменений окружающей среды на функции тела, например, влияние смен времен года или циклов в сутках.

Из древней китайской литературы

Медицинский «Трактат Желтого императора о внутреннем» является основополагающей теорией китайской медицины. Он основан на беседах легендарного императора Хуан Ди с его советником по целому ряду медицинских вопросов. В настоящее время принято считать, что Хуан Ди жил примерно 4600 лет тому назад. Ему приписано изобретение письменности и создание китайского календаря. В его беседах с советником уже тогда упоминались пять элементов. Это говорит о том, что китайская философия была знакома с пятью элементами тысячи лет тому назад. В классической книге по истории «Го Юй» (Guoyu), относящейся к пятому и четвертому веку до нашей эры, написано: "Из различных комбинаций элементов Земли, Металла, Дерева, Воды и Огня можно создать все в этом мире".

Конфуций (551-479г.г. до нашей эры) связал пять элементов с пятью человеческими добродетелями: милосердие, честность, справедливость, мудрость и верность, и каждая из них соответствует одному из пяти элементов. Символом милосердия является Дерево. Справедливость связана с Металлом для придания твердости и стойкости. Вежливость относится к Воде, как проявление скромности. Огонь олицетворяет мудрость, в сочетании с остроумием. Честность соответствует элементу Земли и предупреждает лицемерие. Из выше изложенного видно, что честность порождает справедливость, а вежливость - милосердие.